Loading…

Astrocyte dysfunction in Alzheimer disease

Astrocytes are glial cells that are distributed throughout the central nervous system in an arrangement optimal for chemical and physical interaction with neuronal synapses and brain blood supply vessels. Neurotransmission modulates astrocytic excitability by activating an array of cell surface rece...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroscience research 2017-12, Vol.95 (12), p.2430-2447
Main Authors: Acosta, Crystal, Anderson, Hope D., Anderson, Christopher M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4195-6d988d33cf14cd392c17e9abe62268c2d25d1e13ac009e2e355bd5f9de46b4e3
cites cdi_FETCH-LOGICAL-c4195-6d988d33cf14cd392c17e9abe62268c2d25d1e13ac009e2e355bd5f9de46b4e3
container_end_page 2447
container_issue 12
container_start_page 2430
container_title Journal of neuroscience research
container_volume 95
creator Acosta, Crystal
Anderson, Hope D.
Anderson, Christopher M.
description Astrocytes are glial cells that are distributed throughout the central nervous system in an arrangement optimal for chemical and physical interaction with neuronal synapses and brain blood supply vessels. Neurotransmission modulates astrocytic excitability by activating an array of cell surface receptors and transporter proteins, resulting in dynamic changes in intracellular Ca2+ or Na+. Ionic and electrogenic astrocytic changes, in turn, drive vital cell nonautonomous effects supporting brain function, including regulation of synaptic activity, neuronal metabolism, and regional blood supply. Alzheimer disease (AD) is associated with aberrant oligomeric amyloid β generation, which leads to extensive proliferation of astrocytes with a reactive phenotype and abnormal regulation of these processes. Astrocytic morphology, Ca2+ responses, extracellular K+ removal, glutamate transport, amyloid clearance, and energy metabolism are all affected in AD, resulting in a deleterious set of effects that includes glutamate excitotoxicity, impaired synaptic plasticity, reduced carbon delivery to neurons for oxidative phosphorylation, and dysregulated linkages between neuronal energy demand and regional blood supply. This review summarizes how astrocytes are affected in AD and describes how these changes are likely to influence brain function. © 2017 Wiley Periodicals, Inc.
doi_str_mv 10.1002/jnr.24075
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1895277439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895277439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4195-6d988d33cf14cd392c17e9abe62268c2d25d1e13ac009e2e355bd5f9de46b4e3</originalsourceid><addsrcrecordid>eNp1kMtKw0AYRgdRbL0sfAEJuFEh7dyTWZbilaIg3Q_JzB9MyaXOJEh8ekdTXQiuvs3h8HEQOiN4RjCm803jZpTjROyhKcEqibngyT6aYiZxzDGhE3Tk_QZjrJRgh2hCUy4TKfAUXS9851ozdBDZwRd9Y7qybaKyiRbVxyuUNbjIlh4yDyfooMgqD6e7PUbr25v18j5ePd89LBer2HCiRCytSlPLmCkIN5YpakgCKstBUipTQy0VlgBhmQl3gAITIreiUBa4zDmwY3Q5areufevBd7ouvYGqyhpoe69JqgRNEs5UQC_-oJu2d004p8MTInDKUhmoq5EyrvXeQaG3rqwzN2iC9Vc_Hfrp736BPd8Z-7wG-0v-BAvAfATeywqG_0368ellVH4CeGV4Jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951508386</pqid></control><display><type>article</type><title>Astrocyte dysfunction in Alzheimer disease</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Acosta, Crystal ; Anderson, Hope D. ; Anderson, Christopher M.</creator><creatorcontrib>Acosta, Crystal ; Anderson, Hope D. ; Anderson, Christopher M.</creatorcontrib><description>Astrocytes are glial cells that are distributed throughout the central nervous system in an arrangement optimal for chemical and physical interaction with neuronal synapses and brain blood supply vessels. Neurotransmission modulates astrocytic excitability by activating an array of cell surface receptors and transporter proteins, resulting in dynamic changes in intracellular Ca2+ or Na+. Ionic and electrogenic astrocytic changes, in turn, drive vital cell nonautonomous effects supporting brain function, including regulation of synaptic activity, neuronal metabolism, and regional blood supply. Alzheimer disease (AD) is associated with aberrant oligomeric amyloid β generation, which leads to extensive proliferation of astrocytes with a reactive phenotype and abnormal regulation of these processes. Astrocytic morphology, Ca2+ responses, extracellular K+ removal, glutamate transport, amyloid clearance, and energy metabolism are all affected in AD, resulting in a deleterious set of effects that includes glutamate excitotoxicity, impaired synaptic plasticity, reduced carbon delivery to neurons for oxidative phosphorylation, and dysregulated linkages between neuronal energy demand and regional blood supply. This review summarizes how astrocytes are affected in AD and describes how these changes are likely to influence brain function. © 2017 Wiley Periodicals, Inc.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/jnr.24075</identifier><identifier>PMID: 28467650</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Aberration ; Alzheimer disease ; Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Alzheimer's disease ; amyloid ; Animals ; Astrocytes ; Astrocytes - metabolism ; Astrocytes - pathology ; Blood ; Blood vessels ; Brain ; Calcium (extracellular) ; Calcium (intracellular) ; Cell surface ; Central nervous system ; cerebral blood flow ; dementia ; Energy demand ; Energy metabolism ; Excitability ; Excitotoxicity ; Glial cells ; gliosis ; Humans ; Linkages ; Metabolism ; Neurodegenerative diseases ; neuroinflammation ; Neurotransmission ; Oxidative phosphorylation ; Phosphorylation ; Proteins ; Receptors ; Synapses ; Synaptic plasticity ; β-Amyloid</subject><ispartof>Journal of neuroscience research, 2017-12, Vol.95 (12), p.2430-2447</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4195-6d988d33cf14cd392c17e9abe62268c2d25d1e13ac009e2e355bd5f9de46b4e3</citedby><cites>FETCH-LOGICAL-c4195-6d988d33cf14cd392c17e9abe62268c2d25d1e13ac009e2e355bd5f9de46b4e3</cites><orcidid>0000-0003-0678-3002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28467650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Acosta, Crystal</creatorcontrib><creatorcontrib>Anderson, Hope D.</creatorcontrib><creatorcontrib>Anderson, Christopher M.</creatorcontrib><title>Astrocyte dysfunction in Alzheimer disease</title><title>Journal of neuroscience research</title><addtitle>J Neurosci Res</addtitle><description>Astrocytes are glial cells that are distributed throughout the central nervous system in an arrangement optimal for chemical and physical interaction with neuronal synapses and brain blood supply vessels. Neurotransmission modulates astrocytic excitability by activating an array of cell surface receptors and transporter proteins, resulting in dynamic changes in intracellular Ca2+ or Na+. Ionic and electrogenic astrocytic changes, in turn, drive vital cell nonautonomous effects supporting brain function, including regulation of synaptic activity, neuronal metabolism, and regional blood supply. Alzheimer disease (AD) is associated with aberrant oligomeric amyloid β generation, which leads to extensive proliferation of astrocytes with a reactive phenotype and abnormal regulation of these processes. Astrocytic morphology, Ca2+ responses, extracellular K+ removal, glutamate transport, amyloid clearance, and energy metabolism are all affected in AD, resulting in a deleterious set of effects that includes glutamate excitotoxicity, impaired synaptic plasticity, reduced carbon delivery to neurons for oxidative phosphorylation, and dysregulated linkages between neuronal energy demand and regional blood supply. This review summarizes how astrocytes are affected in AD and describes how these changes are likely to influence brain function. © 2017 Wiley Periodicals, Inc.</description><subject>Aberration</subject><subject>Alzheimer disease</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>amyloid</subject><subject>Animals</subject><subject>Astrocytes</subject><subject>Astrocytes - metabolism</subject><subject>Astrocytes - pathology</subject><subject>Blood</subject><subject>Blood vessels</subject><subject>Brain</subject><subject>Calcium (extracellular)</subject><subject>Calcium (intracellular)</subject><subject>Cell surface</subject><subject>Central nervous system</subject><subject>cerebral blood flow</subject><subject>dementia</subject><subject>Energy demand</subject><subject>Energy metabolism</subject><subject>Excitability</subject><subject>Excitotoxicity</subject><subject>Glial cells</subject><subject>gliosis</subject><subject>Humans</subject><subject>Linkages</subject><subject>Metabolism</subject><subject>Neurodegenerative diseases</subject><subject>neuroinflammation</subject><subject>Neurotransmission</subject><subject>Oxidative phosphorylation</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Synapses</subject><subject>Synaptic plasticity</subject><subject>β-Amyloid</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKw0AYRgdRbL0sfAEJuFEh7dyTWZbilaIg3Q_JzB9MyaXOJEh8ekdTXQiuvs3h8HEQOiN4RjCm803jZpTjROyhKcEqibngyT6aYiZxzDGhE3Tk_QZjrJRgh2hCUy4TKfAUXS9851ozdBDZwRd9Y7qybaKyiRbVxyuUNbjIlh4yDyfooMgqD6e7PUbr25v18j5ePd89LBer2HCiRCytSlPLmCkIN5YpakgCKstBUipTQy0VlgBhmQl3gAITIreiUBa4zDmwY3Q5areufevBd7ouvYGqyhpoe69JqgRNEs5UQC_-oJu2d004p8MTInDKUhmoq5EyrvXeQaG3rqwzN2iC9Vc_Hfrp736BPd8Z-7wG-0v-BAvAfATeywqG_0368ellVH4CeGV4Jg</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Acosta, Crystal</creator><creator>Anderson, Hope D.</creator><creator>Anderson, Christopher M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0678-3002</orcidid></search><sort><creationdate>201712</creationdate><title>Astrocyte dysfunction in Alzheimer disease</title><author>Acosta, Crystal ; Anderson, Hope D. ; Anderson, Christopher M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4195-6d988d33cf14cd392c17e9abe62268c2d25d1e13ac009e2e355bd5f9de46b4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aberration</topic><topic>Alzheimer disease</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>amyloid</topic><topic>Animals</topic><topic>Astrocytes</topic><topic>Astrocytes - metabolism</topic><topic>Astrocytes - pathology</topic><topic>Blood</topic><topic>Blood vessels</topic><topic>Brain</topic><topic>Calcium (extracellular)</topic><topic>Calcium (intracellular)</topic><topic>Cell surface</topic><topic>Central nervous system</topic><topic>cerebral blood flow</topic><topic>dementia</topic><topic>Energy demand</topic><topic>Energy metabolism</topic><topic>Excitability</topic><topic>Excitotoxicity</topic><topic>Glial cells</topic><topic>gliosis</topic><topic>Humans</topic><topic>Linkages</topic><topic>Metabolism</topic><topic>Neurodegenerative diseases</topic><topic>neuroinflammation</topic><topic>Neurotransmission</topic><topic>Oxidative phosphorylation</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Synapses</topic><topic>Synaptic plasticity</topic><topic>β-Amyloid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acosta, Crystal</creatorcontrib><creatorcontrib>Anderson, Hope D.</creatorcontrib><creatorcontrib>Anderson, Christopher M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Acosta, Crystal</au><au>Anderson, Hope D.</au><au>Anderson, Christopher M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Astrocyte dysfunction in Alzheimer disease</atitle><jtitle>Journal of neuroscience research</jtitle><addtitle>J Neurosci Res</addtitle><date>2017-12</date><risdate>2017</risdate><volume>95</volume><issue>12</issue><spage>2430</spage><epage>2447</epage><pages>2430-2447</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>Astrocytes are glial cells that are distributed throughout the central nervous system in an arrangement optimal for chemical and physical interaction with neuronal synapses and brain blood supply vessels. Neurotransmission modulates astrocytic excitability by activating an array of cell surface receptors and transporter proteins, resulting in dynamic changes in intracellular Ca2+ or Na+. Ionic and electrogenic astrocytic changes, in turn, drive vital cell nonautonomous effects supporting brain function, including regulation of synaptic activity, neuronal metabolism, and regional blood supply. Alzheimer disease (AD) is associated with aberrant oligomeric amyloid β generation, which leads to extensive proliferation of astrocytes with a reactive phenotype and abnormal regulation of these processes. Astrocytic morphology, Ca2+ responses, extracellular K+ removal, glutamate transport, amyloid clearance, and energy metabolism are all affected in AD, resulting in a deleterious set of effects that includes glutamate excitotoxicity, impaired synaptic plasticity, reduced carbon delivery to neurons for oxidative phosphorylation, and dysregulated linkages between neuronal energy demand and regional blood supply. This review summarizes how astrocytes are affected in AD and describes how these changes are likely to influence brain function. © 2017 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28467650</pmid><doi>10.1002/jnr.24075</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0678-3002</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-4012
ispartof Journal of neuroscience research, 2017-12, Vol.95 (12), p.2430-2447
issn 0360-4012
1097-4547
language eng
recordid cdi_proquest_miscellaneous_1895277439
source Wiley-Blackwell Read & Publish Collection
subjects Aberration
Alzheimer disease
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Alzheimer's disease
amyloid
Animals
Astrocytes
Astrocytes - metabolism
Astrocytes - pathology
Blood
Blood vessels
Brain
Calcium (extracellular)
Calcium (intracellular)
Cell surface
Central nervous system
cerebral blood flow
dementia
Energy demand
Energy metabolism
Excitability
Excitotoxicity
Glial cells
gliosis
Humans
Linkages
Metabolism
Neurodegenerative diseases
neuroinflammation
Neurotransmission
Oxidative phosphorylation
Phosphorylation
Proteins
Receptors
Synapses
Synaptic plasticity
β-Amyloid
title Astrocyte dysfunction in Alzheimer disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Astrocyte%20dysfunction%20in%20Alzheimer%20disease&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Acosta,%20Crystal&rft.date=2017-12&rft.volume=95&rft.issue=12&rft.spage=2430&rft.epage=2447&rft.pages=2430-2447&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/jnr.24075&rft_dat=%3Cproquest_cross%3E1895277439%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4195-6d988d33cf14cd392c17e9abe62268c2d25d1e13ac009e2e355bd5f9de46b4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1951508386&rft_id=info:pmid/28467650&rfr_iscdi=true