Loading…
Astrocyte dysfunction in Alzheimer disease
Astrocytes are glial cells that are distributed throughout the central nervous system in an arrangement optimal for chemical and physical interaction with neuronal synapses and brain blood supply vessels. Neurotransmission modulates astrocytic excitability by activating an array of cell surface rece...
Saved in:
Published in: | Journal of neuroscience research 2017-12, Vol.95 (12), p.2430-2447 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4195-6d988d33cf14cd392c17e9abe62268c2d25d1e13ac009e2e355bd5f9de46b4e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4195-6d988d33cf14cd392c17e9abe62268c2d25d1e13ac009e2e355bd5f9de46b4e3 |
container_end_page | 2447 |
container_issue | 12 |
container_start_page | 2430 |
container_title | Journal of neuroscience research |
container_volume | 95 |
creator | Acosta, Crystal Anderson, Hope D. Anderson, Christopher M. |
description | Astrocytes are glial cells that are distributed throughout the central nervous system in an arrangement optimal for chemical and physical interaction with neuronal synapses and brain blood supply vessels. Neurotransmission modulates astrocytic excitability by activating an array of cell surface receptors and transporter proteins, resulting in dynamic changes in intracellular Ca2+ or Na+. Ionic and electrogenic astrocytic changes, in turn, drive vital cell nonautonomous effects supporting brain function, including regulation of synaptic activity, neuronal metabolism, and regional blood supply. Alzheimer disease (AD) is associated with aberrant oligomeric amyloid β generation, which leads to extensive proliferation of astrocytes with a reactive phenotype and abnormal regulation of these processes. Astrocytic morphology, Ca2+ responses, extracellular K+ removal, glutamate transport, amyloid clearance, and energy metabolism are all affected in AD, resulting in a deleterious set of effects that includes glutamate excitotoxicity, impaired synaptic plasticity, reduced carbon delivery to neurons for oxidative phosphorylation, and dysregulated linkages between neuronal energy demand and regional blood supply. This review summarizes how astrocytes are affected in AD and describes how these changes are likely to influence brain function. © 2017 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/jnr.24075 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1895277439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895277439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4195-6d988d33cf14cd392c17e9abe62268c2d25d1e13ac009e2e355bd5f9de46b4e3</originalsourceid><addsrcrecordid>eNp1kMtKw0AYRgdRbL0sfAEJuFEh7dyTWZbilaIg3Q_JzB9MyaXOJEh8ekdTXQiuvs3h8HEQOiN4RjCm803jZpTjROyhKcEqibngyT6aYiZxzDGhE3Tk_QZjrJRgh2hCUy4TKfAUXS9851ozdBDZwRd9Y7qybaKyiRbVxyuUNbjIlh4yDyfooMgqD6e7PUbr25v18j5ePd89LBer2HCiRCytSlPLmCkIN5YpakgCKstBUipTQy0VlgBhmQl3gAITIreiUBa4zDmwY3Q5areufevBd7ouvYGqyhpoe69JqgRNEs5UQC_-oJu2d004p8MTInDKUhmoq5EyrvXeQaG3rqwzN2iC9Vc_Hfrp736BPd8Z-7wG-0v-BAvAfATeywqG_0368ellVH4CeGV4Jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951508386</pqid></control><display><type>article</type><title>Astrocyte dysfunction in Alzheimer disease</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Acosta, Crystal ; Anderson, Hope D. ; Anderson, Christopher M.</creator><creatorcontrib>Acosta, Crystal ; Anderson, Hope D. ; Anderson, Christopher M.</creatorcontrib><description>Astrocytes are glial cells that are distributed throughout the central nervous system in an arrangement optimal for chemical and physical interaction with neuronal synapses and brain blood supply vessels. Neurotransmission modulates astrocytic excitability by activating an array of cell surface receptors and transporter proteins, resulting in dynamic changes in intracellular Ca2+ or Na+. Ionic and electrogenic astrocytic changes, in turn, drive vital cell nonautonomous effects supporting brain function, including regulation of synaptic activity, neuronal metabolism, and regional blood supply. Alzheimer disease (AD) is associated with aberrant oligomeric amyloid β generation, which leads to extensive proliferation of astrocytes with a reactive phenotype and abnormal regulation of these processes. Astrocytic morphology, Ca2+ responses, extracellular K+ removal, glutamate transport, amyloid clearance, and energy metabolism are all affected in AD, resulting in a deleterious set of effects that includes glutamate excitotoxicity, impaired synaptic plasticity, reduced carbon delivery to neurons for oxidative phosphorylation, and dysregulated linkages between neuronal energy demand and regional blood supply. This review summarizes how astrocytes are affected in AD and describes how these changes are likely to influence brain function. © 2017 Wiley Periodicals, Inc.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/jnr.24075</identifier><identifier>PMID: 28467650</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Aberration ; Alzheimer disease ; Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Alzheimer's disease ; amyloid ; Animals ; Astrocytes ; Astrocytes - metabolism ; Astrocytes - pathology ; Blood ; Blood vessels ; Brain ; Calcium (extracellular) ; Calcium (intracellular) ; Cell surface ; Central nervous system ; cerebral blood flow ; dementia ; Energy demand ; Energy metabolism ; Excitability ; Excitotoxicity ; Glial cells ; gliosis ; Humans ; Linkages ; Metabolism ; Neurodegenerative diseases ; neuroinflammation ; Neurotransmission ; Oxidative phosphorylation ; Phosphorylation ; Proteins ; Receptors ; Synapses ; Synaptic plasticity ; β-Amyloid</subject><ispartof>Journal of neuroscience research, 2017-12, Vol.95 (12), p.2430-2447</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4195-6d988d33cf14cd392c17e9abe62268c2d25d1e13ac009e2e355bd5f9de46b4e3</citedby><cites>FETCH-LOGICAL-c4195-6d988d33cf14cd392c17e9abe62268c2d25d1e13ac009e2e355bd5f9de46b4e3</cites><orcidid>0000-0003-0678-3002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28467650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Acosta, Crystal</creatorcontrib><creatorcontrib>Anderson, Hope D.</creatorcontrib><creatorcontrib>Anderson, Christopher M.</creatorcontrib><title>Astrocyte dysfunction in Alzheimer disease</title><title>Journal of neuroscience research</title><addtitle>J Neurosci Res</addtitle><description>Astrocytes are glial cells that are distributed throughout the central nervous system in an arrangement optimal for chemical and physical interaction with neuronal synapses and brain blood supply vessels. Neurotransmission modulates astrocytic excitability by activating an array of cell surface receptors and transporter proteins, resulting in dynamic changes in intracellular Ca2+ or Na+. Ionic and electrogenic astrocytic changes, in turn, drive vital cell nonautonomous effects supporting brain function, including regulation of synaptic activity, neuronal metabolism, and regional blood supply. Alzheimer disease (AD) is associated with aberrant oligomeric amyloid β generation, which leads to extensive proliferation of astrocytes with a reactive phenotype and abnormal regulation of these processes. Astrocytic morphology, Ca2+ responses, extracellular K+ removal, glutamate transport, amyloid clearance, and energy metabolism are all affected in AD, resulting in a deleterious set of effects that includes glutamate excitotoxicity, impaired synaptic plasticity, reduced carbon delivery to neurons for oxidative phosphorylation, and dysregulated linkages between neuronal energy demand and regional blood supply. This review summarizes how astrocytes are affected in AD and describes how these changes are likely to influence brain function. © 2017 Wiley Periodicals, Inc.</description><subject>Aberration</subject><subject>Alzheimer disease</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>amyloid</subject><subject>Animals</subject><subject>Astrocytes</subject><subject>Astrocytes - metabolism</subject><subject>Astrocytes - pathology</subject><subject>Blood</subject><subject>Blood vessels</subject><subject>Brain</subject><subject>Calcium (extracellular)</subject><subject>Calcium (intracellular)</subject><subject>Cell surface</subject><subject>Central nervous system</subject><subject>cerebral blood flow</subject><subject>dementia</subject><subject>Energy demand</subject><subject>Energy metabolism</subject><subject>Excitability</subject><subject>Excitotoxicity</subject><subject>Glial cells</subject><subject>gliosis</subject><subject>Humans</subject><subject>Linkages</subject><subject>Metabolism</subject><subject>Neurodegenerative diseases</subject><subject>neuroinflammation</subject><subject>Neurotransmission</subject><subject>Oxidative phosphorylation</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Synapses</subject><subject>Synaptic plasticity</subject><subject>β-Amyloid</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKw0AYRgdRbL0sfAEJuFEh7dyTWZbilaIg3Q_JzB9MyaXOJEh8ekdTXQiuvs3h8HEQOiN4RjCm803jZpTjROyhKcEqibngyT6aYiZxzDGhE3Tk_QZjrJRgh2hCUy4TKfAUXS9851ozdBDZwRd9Y7qybaKyiRbVxyuUNbjIlh4yDyfooMgqD6e7PUbr25v18j5ePd89LBer2HCiRCytSlPLmCkIN5YpakgCKstBUipTQy0VlgBhmQl3gAITIreiUBa4zDmwY3Q5areufevBd7ouvYGqyhpoe69JqgRNEs5UQC_-oJu2d004p8MTInDKUhmoq5EyrvXeQaG3rqwzN2iC9Vc_Hfrp736BPd8Z-7wG-0v-BAvAfATeywqG_0368ellVH4CeGV4Jg</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Acosta, Crystal</creator><creator>Anderson, Hope D.</creator><creator>Anderson, Christopher M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0678-3002</orcidid></search><sort><creationdate>201712</creationdate><title>Astrocyte dysfunction in Alzheimer disease</title><author>Acosta, Crystal ; Anderson, Hope D. ; Anderson, Christopher M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4195-6d988d33cf14cd392c17e9abe62268c2d25d1e13ac009e2e355bd5f9de46b4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aberration</topic><topic>Alzheimer disease</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>amyloid</topic><topic>Animals</topic><topic>Astrocytes</topic><topic>Astrocytes - metabolism</topic><topic>Astrocytes - pathology</topic><topic>Blood</topic><topic>Blood vessels</topic><topic>Brain</topic><topic>Calcium (extracellular)</topic><topic>Calcium (intracellular)</topic><topic>Cell surface</topic><topic>Central nervous system</topic><topic>cerebral blood flow</topic><topic>dementia</topic><topic>Energy demand</topic><topic>Energy metabolism</topic><topic>Excitability</topic><topic>Excitotoxicity</topic><topic>Glial cells</topic><topic>gliosis</topic><topic>Humans</topic><topic>Linkages</topic><topic>Metabolism</topic><topic>Neurodegenerative diseases</topic><topic>neuroinflammation</topic><topic>Neurotransmission</topic><topic>Oxidative phosphorylation</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Synapses</topic><topic>Synaptic plasticity</topic><topic>β-Amyloid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acosta, Crystal</creatorcontrib><creatorcontrib>Anderson, Hope D.</creatorcontrib><creatorcontrib>Anderson, Christopher M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Acosta, Crystal</au><au>Anderson, Hope D.</au><au>Anderson, Christopher M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Astrocyte dysfunction in Alzheimer disease</atitle><jtitle>Journal of neuroscience research</jtitle><addtitle>J Neurosci Res</addtitle><date>2017-12</date><risdate>2017</risdate><volume>95</volume><issue>12</issue><spage>2430</spage><epage>2447</epage><pages>2430-2447</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>Astrocytes are glial cells that are distributed throughout the central nervous system in an arrangement optimal for chemical and physical interaction with neuronal synapses and brain blood supply vessels. Neurotransmission modulates astrocytic excitability by activating an array of cell surface receptors and transporter proteins, resulting in dynamic changes in intracellular Ca2+ or Na+. Ionic and electrogenic astrocytic changes, in turn, drive vital cell nonautonomous effects supporting brain function, including regulation of synaptic activity, neuronal metabolism, and regional blood supply. Alzheimer disease (AD) is associated with aberrant oligomeric amyloid β generation, which leads to extensive proliferation of astrocytes with a reactive phenotype and abnormal regulation of these processes. Astrocytic morphology, Ca2+ responses, extracellular K+ removal, glutamate transport, amyloid clearance, and energy metabolism are all affected in AD, resulting in a deleterious set of effects that includes glutamate excitotoxicity, impaired synaptic plasticity, reduced carbon delivery to neurons for oxidative phosphorylation, and dysregulated linkages between neuronal energy demand and regional blood supply. This review summarizes how astrocytes are affected in AD and describes how these changes are likely to influence brain function. © 2017 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28467650</pmid><doi>10.1002/jnr.24075</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0678-3002</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-4012 |
ispartof | Journal of neuroscience research, 2017-12, Vol.95 (12), p.2430-2447 |
issn | 0360-4012 1097-4547 |
language | eng |
recordid | cdi_proquest_miscellaneous_1895277439 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aberration Alzheimer disease Alzheimer Disease - metabolism Alzheimer Disease - pathology Alzheimer's disease amyloid Animals Astrocytes Astrocytes - metabolism Astrocytes - pathology Blood Blood vessels Brain Calcium (extracellular) Calcium (intracellular) Cell surface Central nervous system cerebral blood flow dementia Energy demand Energy metabolism Excitability Excitotoxicity Glial cells gliosis Humans Linkages Metabolism Neurodegenerative diseases neuroinflammation Neurotransmission Oxidative phosphorylation Phosphorylation Proteins Receptors Synapses Synaptic plasticity β-Amyloid |
title | Astrocyte dysfunction in Alzheimer disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Astrocyte%20dysfunction%20in%20Alzheimer%20disease&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Acosta,%20Crystal&rft.date=2017-12&rft.volume=95&rft.issue=12&rft.spage=2430&rft.epage=2447&rft.pages=2430-2447&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/jnr.24075&rft_dat=%3Cproquest_cross%3E1895277439%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4195-6d988d33cf14cd392c17e9abe62268c2d25d1e13ac009e2e355bd5f9de46b4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1951508386&rft_id=info:pmid/28467650&rfr_iscdi=true |