Loading…
Attosecond Dynamics of Molecular Electronic Ring Currents
Ultrafast charge migration is of fundamental importance to photoinduced chemical reactions. However, exploring such a quantum dynamical process requires demanding spatial and temporal resolutions. We show how electronic coherence dynamics induced in molecules by a circularly polarized UV pulse can b...
Saved in:
Published in: | The journal of physical chemistry letters 2017-05, Vol.8 (10), p.2229-2235 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ultrafast charge migration is of fundamental importance to photoinduced chemical reactions. However, exploring such a quantum dynamical process requires demanding spatial and temporal resolutions. We show how electronic coherence dynamics induced in molecules by a circularly polarized UV pulse can be tracked by using a time-delayed circularly polarized attosecond X-ray pulse. The X-ray probe spectra retrieve an image at different time delays, encoding instantaneous pump-induced circular charge migration information on an attosecond time scale. A time-dependent ultrafast electronic coherence associated with the periodical circular ring currents shows a strong dependence on the helicity of the UV pulse, which may provide a direct approach to access and control the electronic quantum coherence dynamics in photophysical and photochemical reactions in real time. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.7b00877 |