Loading…
Metabolic profiling of recombinant Escherichia coli cultivations based on high‐throughput FT‐MIR spectroscopic analysis
Escherichia coli is one of the most used host microorganism for the production of recombinant products, such as heterologous proteins and plasmids. However, genetic, physiological and environmental factors influence the plasmid replication and cloned gene expression in a highly complex way. To contr...
Saved in:
Published in: | Biotechnology progress 2017-03, Vol.33 (2), p.285-298 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4518-bcc4ac48d56b6647fec89791778e3d2cb7c183e045761401809a3515dd5e85983 |
---|---|
cites | cdi_FETCH-LOGICAL-c4518-bcc4ac48d56b6647fec89791778e3d2cb7c183e045761401809a3515dd5e85983 |
container_end_page | 298 |
container_issue | 2 |
container_start_page | 285 |
container_title | Biotechnology progress |
container_volume | 33 |
creator | Sales, Kevin C. Rosa, Filipa Cunha, Bernardo R. Sampaio, Pedro N. Lopes, Marta B. Calado, Cecília R. C. |
description | Escherichia coli is one of the most used host microorganism for the production of recombinant products, such as heterologous proteins and plasmids. However, genetic, physiological and environmental factors influence the plasmid replication and cloned gene expression in a highly complex way. To control and optimize the recombinant expression system performance, it is very important to understand this complexity. Therefore, the development of rapid, highly sensitive and economic analytical methodologies, which enable the simultaneous characterization of the heterologous product synthesis and physiologic cell behavior under a variety of culture conditions, is highly desirable. For that, the metabolic profile of recombinant E. coli cultures producing the pVAX‐lacZ plasmid model was analyzed by rapid, economic and high‐throughput Fourier Transform Mid‐Infrared (FT‐MIR) spectroscopy. The main goal of the present work is to show as the simultaneous multivariate data analysis by principal component analysis (PCA) and direct spectral analysis could represent a very interesting tool to monitor E. coli culture processes and acquire relevant information according to current quality regulatory guidelines. While PCA allowed capturing the energetic metabolic state of the cell, e.g. by identifying different C‐sources consumption phases, direct FT‐MIR spectral analysis allowed obtaining valuable biochemical and metabolic information along the cell culture, e.g. lipids, RNA, protein synthesis and turnover metabolism. The information achieved by spectral multivariate data and direct spectral analyses complement each other and may contribute to understand the complex interrelationships between the recombinant cell metabolism and the bioprocess environment towards more economic and robust processes design according to Quality by Design framework. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:285–298, 2017 |
doi_str_mv | 10.1002/btpr.2378 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1897371126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1834992961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4518-bcc4ac48d56b6647fec89791778e3d2cb7c183e045761401809a3515dd5e85983</originalsourceid><addsrcrecordid>eNqNkc1qFTEYhoMo9lhdeAMScKOLafMz-VtqabXQopTjesh8kzmTMmcyJhnl4MZL8Bq9EnN6qgtBcBUCD8_Hy4PQc0pOKCHstM1zPGFc6QdoRQUjlSScP0QrrYSslOH6CD1J6ZYQoolkj9ERU9JIxegKfbt22bZh9IDnGHo_-mmDQ4-jg7Bt_WSnjM8TDC56GLzFUFAMy5j9F5t9mBJubXIdDhMe_Gb4-f1HHmJYNsO8ZHyxLv_ryxucZgc5hgRhLofsZMdd8ukpetTbMbln9-8x-nRxvj57X119eHd59uaqglpQXbUAtYVad0K2Utaqd6CNMlQp7XjHoFVANXekFkrSmlBNjOWCiq4TTguj-TF6dfCWhZ8Xl3Kz9QncONrJhSU1tOi4opTJ_0B5bQwzkhb05V_obVhimXYnpEwTTvbC1wcKyvwUXd_M0W9t3DWUNPt4zT5es49X2Bf3xqXduu4P-btWAU4PwFc_ut2_Tc3b9cebO-UvzFqmhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891280306</pqid></control><display><type>article</type><title>Metabolic profiling of recombinant Escherichia coli cultivations based on high‐throughput FT‐MIR spectroscopic analysis</title><source>Wiley</source><creator>Sales, Kevin C. ; Rosa, Filipa ; Cunha, Bernardo R. ; Sampaio, Pedro N. ; Lopes, Marta B. ; Calado, Cecília R. C.</creator><creatorcontrib>Sales, Kevin C. ; Rosa, Filipa ; Cunha, Bernardo R. ; Sampaio, Pedro N. ; Lopes, Marta B. ; Calado, Cecília R. C.</creatorcontrib><description>Escherichia coli is one of the most used host microorganism for the production of recombinant products, such as heterologous proteins and plasmids. However, genetic, physiological and environmental factors influence the plasmid replication and cloned gene expression in a highly complex way. To control and optimize the recombinant expression system performance, it is very important to understand this complexity. Therefore, the development of rapid, highly sensitive and economic analytical methodologies, which enable the simultaneous characterization of the heterologous product synthesis and physiologic cell behavior under a variety of culture conditions, is highly desirable. For that, the metabolic profile of recombinant E. coli cultures producing the pVAX‐lacZ plasmid model was analyzed by rapid, economic and high‐throughput Fourier Transform Mid‐Infrared (FT‐MIR) spectroscopy. The main goal of the present work is to show as the simultaneous multivariate data analysis by principal component analysis (PCA) and direct spectral analysis could represent a very interesting tool to monitor E. coli culture processes and acquire relevant information according to current quality regulatory guidelines. While PCA allowed capturing the energetic metabolic state of the cell, e.g. by identifying different C‐sources consumption phases, direct FT‐MIR spectral analysis allowed obtaining valuable biochemical and metabolic information along the cell culture, e.g. lipids, RNA, protein synthesis and turnover metabolism. The information achieved by spectral multivariate data and direct spectral analyses complement each other and may contribute to understand the complex interrelationships between the recombinant cell metabolism and the bioprocess environment towards more economic and robust processes design according to Quality by Design framework. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:285–298, 2017</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.2378</identifier><identifier>PMID: 27696721</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; bioprocess ; E coli ; Economics ; Environmental factors ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fourier transforms ; FT‐MIR spectroscopy ; Gene Expression Profiling - methods ; High-Throughput Screening Assays - methods ; Lipids ; metabolic profiling ; Metabolome - physiology ; Multivariate Analysis ; PCA ; Principal Component Analysis ; Principal components analysis ; Protein synthesis ; Recombination, Genetic - genetics ; Reproducibility of Results ; Sensitivity and Specificity ; Spectral analysis ; Spectroscopy, Fourier Transform Infrared - methods</subject><ispartof>Biotechnology progress, 2017-03, Vol.33 (2), p.285-298</ispartof><rights>2016 American Institute of Chemical Engineers</rights><rights>2016 American Institute of Chemical Engineers.</rights><rights>2017 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4518-bcc4ac48d56b6647fec89791778e3d2cb7c183e045761401809a3515dd5e85983</citedby><cites>FETCH-LOGICAL-c4518-bcc4ac48d56b6647fec89791778e3d2cb7c183e045761401809a3515dd5e85983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27696721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sales, Kevin C.</creatorcontrib><creatorcontrib>Rosa, Filipa</creatorcontrib><creatorcontrib>Cunha, Bernardo R.</creatorcontrib><creatorcontrib>Sampaio, Pedro N.</creatorcontrib><creatorcontrib>Lopes, Marta B.</creatorcontrib><creatorcontrib>Calado, Cecília R. C.</creatorcontrib><title>Metabolic profiling of recombinant Escherichia coli cultivations based on high‐throughput FT‐MIR spectroscopic analysis</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>Escherichia coli is one of the most used host microorganism for the production of recombinant products, such as heterologous proteins and plasmids. However, genetic, physiological and environmental factors influence the plasmid replication and cloned gene expression in a highly complex way. To control and optimize the recombinant expression system performance, it is very important to understand this complexity. Therefore, the development of rapid, highly sensitive and economic analytical methodologies, which enable the simultaneous characterization of the heterologous product synthesis and physiologic cell behavior under a variety of culture conditions, is highly desirable. For that, the metabolic profile of recombinant E. coli cultures producing the pVAX‐lacZ plasmid model was analyzed by rapid, economic and high‐throughput Fourier Transform Mid‐Infrared (FT‐MIR) spectroscopy. The main goal of the present work is to show as the simultaneous multivariate data analysis by principal component analysis (PCA) and direct spectral analysis could represent a very interesting tool to monitor E. coli culture processes and acquire relevant information according to current quality regulatory guidelines. While PCA allowed capturing the energetic metabolic state of the cell, e.g. by identifying different C‐sources consumption phases, direct FT‐MIR spectral analysis allowed obtaining valuable biochemical and metabolic information along the cell culture, e.g. lipids, RNA, protein synthesis and turnover metabolism. The information achieved by spectral multivariate data and direct spectral analyses complement each other and may contribute to understand the complex interrelationships between the recombinant cell metabolism and the bioprocess environment towards more economic and robust processes design according to Quality by Design framework. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:285–298, 2017</description><subject>Algorithms</subject><subject>bioprocess</subject><subject>E coli</subject><subject>Economics</subject><subject>Environmental factors</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fourier transforms</subject><subject>FT‐MIR spectroscopy</subject><subject>Gene Expression Profiling - methods</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Lipids</subject><subject>metabolic profiling</subject><subject>Metabolome - physiology</subject><subject>Multivariate Analysis</subject><subject>PCA</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Protein synthesis</subject><subject>Recombination, Genetic - genetics</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Spectral analysis</subject><subject>Spectroscopy, Fourier Transform Infrared - methods</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkc1qFTEYhoMo9lhdeAMScKOLafMz-VtqabXQopTjesh8kzmTMmcyJhnl4MZL8Bq9EnN6qgtBcBUCD8_Hy4PQc0pOKCHstM1zPGFc6QdoRQUjlSScP0QrrYSslOH6CD1J6ZYQoolkj9ERU9JIxegKfbt22bZh9IDnGHo_-mmDQ4-jg7Bt_WSnjM8TDC56GLzFUFAMy5j9F5t9mBJubXIdDhMe_Gb4-f1HHmJYNsO8ZHyxLv_ryxucZgc5hgRhLofsZMdd8ukpetTbMbln9-8x-nRxvj57X119eHd59uaqglpQXbUAtYVad0K2Utaqd6CNMlQp7XjHoFVANXekFkrSmlBNjOWCiq4TTguj-TF6dfCWhZ8Xl3Kz9QncONrJhSU1tOi4opTJ_0B5bQwzkhb05V_obVhimXYnpEwTTvbC1wcKyvwUXd_M0W9t3DWUNPt4zT5es49X2Bf3xqXduu4P-btWAU4PwFc_ut2_Tc3b9cebO-UvzFqmhA</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Sales, Kevin C.</creator><creator>Rosa, Filipa</creator><creator>Cunha, Bernardo R.</creator><creator>Sampaio, Pedro N.</creator><creator>Lopes, Marta B.</creator><creator>Calado, Cecília R. C.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201703</creationdate><title>Metabolic profiling of recombinant Escherichia coli cultivations based on high‐throughput FT‐MIR spectroscopic analysis</title><author>Sales, Kevin C. ; Rosa, Filipa ; Cunha, Bernardo R. ; Sampaio, Pedro N. ; Lopes, Marta B. ; Calado, Cecília R. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4518-bcc4ac48d56b6647fec89791778e3d2cb7c183e045761401809a3515dd5e85983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>bioprocess</topic><topic>E coli</topic><topic>Economics</topic><topic>Environmental factors</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fourier transforms</topic><topic>FT‐MIR spectroscopy</topic><topic>Gene Expression Profiling - methods</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Lipids</topic><topic>metabolic profiling</topic><topic>Metabolome - physiology</topic><topic>Multivariate Analysis</topic><topic>PCA</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Protein synthesis</topic><topic>Recombination, Genetic - genetics</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Spectral analysis</topic><topic>Spectroscopy, Fourier Transform Infrared - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sales, Kevin C.</creatorcontrib><creatorcontrib>Rosa, Filipa</creatorcontrib><creatorcontrib>Cunha, Bernardo R.</creatorcontrib><creatorcontrib>Sampaio, Pedro N.</creatorcontrib><creatorcontrib>Lopes, Marta B.</creatorcontrib><creatorcontrib>Calado, Cecília R. C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sales, Kevin C.</au><au>Rosa, Filipa</au><au>Cunha, Bernardo R.</au><au>Sampaio, Pedro N.</au><au>Lopes, Marta B.</au><au>Calado, Cecília R. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic profiling of recombinant Escherichia coli cultivations based on high‐throughput FT‐MIR spectroscopic analysis</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>2017-03</date><risdate>2017</risdate><volume>33</volume><issue>2</issue><spage>285</spage><epage>298</epage><pages>285-298</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>Escherichia coli is one of the most used host microorganism for the production of recombinant products, such as heterologous proteins and plasmids. However, genetic, physiological and environmental factors influence the plasmid replication and cloned gene expression in a highly complex way. To control and optimize the recombinant expression system performance, it is very important to understand this complexity. Therefore, the development of rapid, highly sensitive and economic analytical methodologies, which enable the simultaneous characterization of the heterologous product synthesis and physiologic cell behavior under a variety of culture conditions, is highly desirable. For that, the metabolic profile of recombinant E. coli cultures producing the pVAX‐lacZ plasmid model was analyzed by rapid, economic and high‐throughput Fourier Transform Mid‐Infrared (FT‐MIR) spectroscopy. The main goal of the present work is to show as the simultaneous multivariate data analysis by principal component analysis (PCA) and direct spectral analysis could represent a very interesting tool to monitor E. coli culture processes and acquire relevant information according to current quality regulatory guidelines. While PCA allowed capturing the energetic metabolic state of the cell, e.g. by identifying different C‐sources consumption phases, direct FT‐MIR spectral analysis allowed obtaining valuable biochemical and metabolic information along the cell culture, e.g. lipids, RNA, protein synthesis and turnover metabolism. The information achieved by spectral multivariate data and direct spectral analyses complement each other and may contribute to understand the complex interrelationships between the recombinant cell metabolism and the bioprocess environment towards more economic and robust processes design according to Quality by Design framework. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:285–298, 2017</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27696721</pmid><doi>10.1002/btpr.2378</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2017-03, Vol.33 (2), p.285-298 |
issn | 8756-7938 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_1897371126 |
source | Wiley |
subjects | Algorithms bioprocess E coli Economics Environmental factors Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Fourier transforms FT‐MIR spectroscopy Gene Expression Profiling - methods High-Throughput Screening Assays - methods Lipids metabolic profiling Metabolome - physiology Multivariate Analysis PCA Principal Component Analysis Principal components analysis Protein synthesis Recombination, Genetic - genetics Reproducibility of Results Sensitivity and Specificity Spectral analysis Spectroscopy, Fourier Transform Infrared - methods |
title | Metabolic profiling of recombinant Escherichia coli cultivations based on high‐throughput FT‐MIR spectroscopic analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A36%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20profiling%20of%20recombinant%20Escherichia%20coli%20cultivations%20based%20on%20high%E2%80%90throughput%20FT%E2%80%90MIR%20spectroscopic%20analysis&rft.jtitle=Biotechnology%20progress&rft.au=Sales,%20Kevin%20C.&rft.date=2017-03&rft.volume=33&rft.issue=2&rft.spage=285&rft.epage=298&rft.pages=285-298&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.2378&rft_dat=%3Cproquest_cross%3E1834992961%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4518-bcc4ac48d56b6647fec89791778e3d2cb7c183e045761401809a3515dd5e85983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1891280306&rft_id=info:pmid/27696721&rfr_iscdi=true |