Loading…

Transient Recharge Estimability Through Field‐Scale Groundwater Model Calibration

The estimation of recharge through groundwater model calibration is hampered by the nonuniqueness of recharge and aquifer parameter values. It has been shown recently that the estimability of spatially distributed recharge through calibration of steady‐state models for practical situations (i.e., re...

Full description

Saved in:
Bibliographic Details
Published in:Ground water 2017-11, Vol.55 (6), p.827-840
Main Authors: Knowling, Matthew J., Werner, Adrian D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3806-e321f9d4f89fad6af0f806351805ab30c55d0e674fc51a1f8b604f859ec086973
cites cdi_FETCH-LOGICAL-a3806-e321f9d4f89fad6af0f806351805ab30c55d0e674fc51a1f8b604f859ec086973
container_end_page 840
container_issue 6
container_start_page 827
container_title Ground water
container_volume 55
creator Knowling, Matthew J.
Werner, Adrian D.
description The estimation of recharge through groundwater model calibration is hampered by the nonuniqueness of recharge and aquifer parameter values. It has been shown recently that the estimability of spatially distributed recharge through calibration of steady‐state models for practical situations (i.e., real‐world, field‐scale aquifer settings) is limited by the need for excessive amounts of hydraulic‐parameter and groundwater‐level data. However, the extent to which temporal recharge variability can be informed through transient model calibration, which involves larger water‐level datasets, but requires the additional consideration of storage parameters, is presently unknown for practical situations. In this study, time‐varying recharge estimates, inferred through calibration of a field‐scale highly parameterized groundwater model, are systematically investigated subject to changes in (1) the degree to which hydraulic parameters including hydraulic conductivity (K) and specific yield (Sy) are constrained, (2) the number of water‐level calibration targets, and (3) the temporal resolution (up to monthly time steps) at which recharge is estimated. The analysis involves the use of a synthetic reality (a reference model) based on a groundwater model of Uley South Basin, South Australia. Identifiability statistics are used to evaluate the ability of recharge and hydraulic parameters to be estimated uniquely. Results show that reasonable estimates of monthly recharge (
doi_str_mv 10.1111/gwat.12526
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899109869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1964266024</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3806-e321f9d4f89fad6af0f806351805ab30c55d0e674fc51a1f8b604f859ec086973</originalsourceid><addsrcrecordid>eNp90MFKJDEQBuCwrKyj62UfYGnYiwjtVrqTdHKUQUdBEXREbyHdXZmJZLrdpBuZm4_gM_okRkf3sIetS6D4-FP8hPygcEjT_F48muGQFrwQX8iEVozngkv2lUwAaJUzUd1tk50Y7wGgVKC-ke1CMiWZ5BNyPQ-miw67IbvCZmnCArPjOLiVqZ13wzqbL0M_LpbZiUPfvjw9XzfGYzZLy65N_2LILvoWfTY13tXBDK7vvpMta3zEvY93l9ycHM-np_n55exsenSem1KCyLEsqFUts1JZ0wpjwaZ1yakEbuoSGs5bQFEx23BqqJW1gIS5wgakUFW5S_Y3uQ-h_zNiHPTKxQa9Nx32Y9RUKkVBJZvor3_ofT-GLl2nqRKsEAIKltTBRjWhjzGg1Q8hNRHWmoJ-q1q_Va3fq07450fkWK-w_Us_u02AbsCj87j-T5Se3R7NN6GvuPKJqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964266024</pqid></control><display><type>article</type><title>Transient Recharge Estimability Through Field‐Scale Groundwater Model Calibration</title><source>Wiley</source><creator>Knowling, Matthew J. ; Werner, Adrian D.</creator><creatorcontrib>Knowling, Matthew J. ; Werner, Adrian D.</creatorcontrib><description>The estimation of recharge through groundwater model calibration is hampered by the nonuniqueness of recharge and aquifer parameter values. It has been shown recently that the estimability of spatially distributed recharge through calibration of steady‐state models for practical situations (i.e., real‐world, field‐scale aquifer settings) is limited by the need for excessive amounts of hydraulic‐parameter and groundwater‐level data. However, the extent to which temporal recharge variability can be informed through transient model calibration, which involves larger water‐level datasets, but requires the additional consideration of storage parameters, is presently unknown for practical situations. In this study, time‐varying recharge estimates, inferred through calibration of a field‐scale highly parameterized groundwater model, are systematically investigated subject to changes in (1) the degree to which hydraulic parameters including hydraulic conductivity (K) and specific yield (Sy) are constrained, (2) the number of water‐level calibration targets, and (3) the temporal resolution (up to monthly time steps) at which recharge is estimated. The analysis involves the use of a synthetic reality (a reference model) based on a groundwater model of Uley South Basin, South Australia. Identifiability statistics are used to evaluate the ability of recharge and hydraulic parameters to be estimated uniquely. Results show that reasonable estimates of monthly recharge (&lt;30% recharge root‐mean‐squared error) require a considerable amount of transient water‐level data, and that the spatial distribution of K is known. Joint estimation of recharge, Sy and K, however, precludes reasonable inference of recharge and hydraulic parameter values. We conclude that the estimation of temporal recharge variability through calibration may be impractical for real‐world settings.</description><identifier>ISSN: 0017-467X</identifier><identifier>EISSN: 1745-6584</identifier><identifier>DOI: 10.1111/gwat.12526</identifier><identifier>PMID: 28498485</identifier><language>eng</language><publisher>Malden, US: Blackwell Publishing Ltd</publisher><subject>Aquifers ; Calibration ; Groundwater ; Groundwater data ; Groundwater levels ; Groundwater recharge ; Hydraulics ; Mathematical models ; Models, Theoretical ; Parameter estimation ; Parameters ; Scale (ratio) ; South Australia ; Spatial data ; Spatial distribution ; Specific yield ; Statistical analysis ; Statistical methods ; Steady state models ; Storage ; Temporal resolution ; Variability ; Water levels ; Water Movements</subject><ispartof>Ground water, 2017-11, Vol.55 (6), p.827-840</ispartof><rights>2017, National Ground Water Association.</rights><rights>Groundwater © 2017, National Ground Water Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3806-e321f9d4f89fad6af0f806351805ab30c55d0e674fc51a1f8b604f859ec086973</citedby><cites>FETCH-LOGICAL-a3806-e321f9d4f89fad6af0f806351805ab30c55d0e674fc51a1f8b604f859ec086973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28498485$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knowling, Matthew J.</creatorcontrib><creatorcontrib>Werner, Adrian D.</creatorcontrib><title>Transient Recharge Estimability Through Field‐Scale Groundwater Model Calibration</title><title>Ground water</title><addtitle>Ground Water</addtitle><description>The estimation of recharge through groundwater model calibration is hampered by the nonuniqueness of recharge and aquifer parameter values. It has been shown recently that the estimability of spatially distributed recharge through calibration of steady‐state models for practical situations (i.e., real‐world, field‐scale aquifer settings) is limited by the need for excessive amounts of hydraulic‐parameter and groundwater‐level data. However, the extent to which temporal recharge variability can be informed through transient model calibration, which involves larger water‐level datasets, but requires the additional consideration of storage parameters, is presently unknown for practical situations. In this study, time‐varying recharge estimates, inferred through calibration of a field‐scale highly parameterized groundwater model, are systematically investigated subject to changes in (1) the degree to which hydraulic parameters including hydraulic conductivity (K) and specific yield (Sy) are constrained, (2) the number of water‐level calibration targets, and (3) the temporal resolution (up to monthly time steps) at which recharge is estimated. The analysis involves the use of a synthetic reality (a reference model) based on a groundwater model of Uley South Basin, South Australia. Identifiability statistics are used to evaluate the ability of recharge and hydraulic parameters to be estimated uniquely. Results show that reasonable estimates of monthly recharge (&lt;30% recharge root‐mean‐squared error) require a considerable amount of transient water‐level data, and that the spatial distribution of K is known. Joint estimation of recharge, Sy and K, however, precludes reasonable inference of recharge and hydraulic parameter values. We conclude that the estimation of temporal recharge variability through calibration may be impractical for real‐world settings.</description><subject>Aquifers</subject><subject>Calibration</subject><subject>Groundwater</subject><subject>Groundwater data</subject><subject>Groundwater levels</subject><subject>Groundwater recharge</subject><subject>Hydraulics</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Scale (ratio)</subject><subject>South Australia</subject><subject>Spatial data</subject><subject>Spatial distribution</subject><subject>Specific yield</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Steady state models</subject><subject>Storage</subject><subject>Temporal resolution</subject><subject>Variability</subject><subject>Water levels</subject><subject>Water Movements</subject><issn>0017-467X</issn><issn>1745-6584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90MFKJDEQBuCwrKyj62UfYGnYiwjtVrqTdHKUQUdBEXREbyHdXZmJZLrdpBuZm4_gM_okRkf3sIetS6D4-FP8hPygcEjT_F48muGQFrwQX8iEVozngkv2lUwAaJUzUd1tk50Y7wGgVKC-ke1CMiWZ5BNyPQ-miw67IbvCZmnCArPjOLiVqZ13wzqbL0M_LpbZiUPfvjw9XzfGYzZLy65N_2LILvoWfTY13tXBDK7vvpMta3zEvY93l9ycHM-np_n55exsenSem1KCyLEsqFUts1JZ0wpjwaZ1yakEbuoSGs5bQFEx23BqqJW1gIS5wgakUFW5S_Y3uQ-h_zNiHPTKxQa9Nx32Y9RUKkVBJZvor3_ofT-GLl2nqRKsEAIKltTBRjWhjzGg1Q8hNRHWmoJ-q1q_Va3fq07450fkWK-w_Us_u02AbsCj87j-T5Se3R7NN6GvuPKJqg</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Knowling, Matthew J.</creator><creator>Werner, Adrian D.</creator><general>Blackwell Publishing Ltd</general><general>Ground Water Publishing Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201711</creationdate><title>Transient Recharge Estimability Through Field‐Scale Groundwater Model Calibration</title><author>Knowling, Matthew J. ; Werner, Adrian D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3806-e321f9d4f89fad6af0f806351805ab30c55d0e674fc51a1f8b604f859ec086973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aquifers</topic><topic>Calibration</topic><topic>Groundwater</topic><topic>Groundwater data</topic><topic>Groundwater levels</topic><topic>Groundwater recharge</topic><topic>Hydraulics</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Scale (ratio)</topic><topic>South Australia</topic><topic>Spatial data</topic><topic>Spatial distribution</topic><topic>Specific yield</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Steady state models</topic><topic>Storage</topic><topic>Temporal resolution</topic><topic>Variability</topic><topic>Water levels</topic><topic>Water Movements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knowling, Matthew J.</creatorcontrib><creatorcontrib>Werner, Adrian D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ground water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knowling, Matthew J.</au><au>Werner, Adrian D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient Recharge Estimability Through Field‐Scale Groundwater Model Calibration</atitle><jtitle>Ground water</jtitle><addtitle>Ground Water</addtitle><date>2017-11</date><risdate>2017</risdate><volume>55</volume><issue>6</issue><spage>827</spage><epage>840</epage><pages>827-840</pages><issn>0017-467X</issn><eissn>1745-6584</eissn><abstract>The estimation of recharge through groundwater model calibration is hampered by the nonuniqueness of recharge and aquifer parameter values. It has been shown recently that the estimability of spatially distributed recharge through calibration of steady‐state models for practical situations (i.e., real‐world, field‐scale aquifer settings) is limited by the need for excessive amounts of hydraulic‐parameter and groundwater‐level data. However, the extent to which temporal recharge variability can be informed through transient model calibration, which involves larger water‐level datasets, but requires the additional consideration of storage parameters, is presently unknown for practical situations. In this study, time‐varying recharge estimates, inferred through calibration of a field‐scale highly parameterized groundwater model, are systematically investigated subject to changes in (1) the degree to which hydraulic parameters including hydraulic conductivity (K) and specific yield (Sy) are constrained, (2) the number of water‐level calibration targets, and (3) the temporal resolution (up to monthly time steps) at which recharge is estimated. The analysis involves the use of a synthetic reality (a reference model) based on a groundwater model of Uley South Basin, South Australia. Identifiability statistics are used to evaluate the ability of recharge and hydraulic parameters to be estimated uniquely. Results show that reasonable estimates of monthly recharge (&lt;30% recharge root‐mean‐squared error) require a considerable amount of transient water‐level data, and that the spatial distribution of K is known. Joint estimation of recharge, Sy and K, however, precludes reasonable inference of recharge and hydraulic parameter values. We conclude that the estimation of temporal recharge variability through calibration may be impractical for real‐world settings.</abstract><cop>Malden, US</cop><pub>Blackwell Publishing Ltd</pub><pmid>28498485</pmid><doi>10.1111/gwat.12526</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-467X
ispartof Ground water, 2017-11, Vol.55 (6), p.827-840
issn 0017-467X
1745-6584
language eng
recordid cdi_proquest_miscellaneous_1899109869
source Wiley
subjects Aquifers
Calibration
Groundwater
Groundwater data
Groundwater levels
Groundwater recharge
Hydraulics
Mathematical models
Models, Theoretical
Parameter estimation
Parameters
Scale (ratio)
South Australia
Spatial data
Spatial distribution
Specific yield
Statistical analysis
Statistical methods
Steady state models
Storage
Temporal resolution
Variability
Water levels
Water Movements
title Transient Recharge Estimability Through Field‐Scale Groundwater Model Calibration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20Recharge%20Estimability%20Through%20Field%E2%80%90Scale%20Groundwater%20Model%20Calibration&rft.jtitle=Ground%20water&rft.au=Knowling,%20Matthew%20J.&rft.date=2017-11&rft.volume=55&rft.issue=6&rft.spage=827&rft.epage=840&rft.pages=827-840&rft.issn=0017-467X&rft.eissn=1745-6584&rft_id=info:doi/10.1111/gwat.12526&rft_dat=%3Cproquest_cross%3E1964266024%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3806-e321f9d4f89fad6af0f806351805ab30c55d0e674fc51a1f8b604f859ec086973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1964266024&rft_id=info:pmid/28498485&rfr_iscdi=true