Loading…
Transient Recharge Estimability Through Field‐Scale Groundwater Model Calibration
The estimation of recharge through groundwater model calibration is hampered by the nonuniqueness of recharge and aquifer parameter values. It has been shown recently that the estimability of spatially distributed recharge through calibration of steady‐state models for practical situations (i.e., re...
Saved in:
Published in: | Ground water 2017-11, Vol.55 (6), p.827-840 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a3806-e321f9d4f89fad6af0f806351805ab30c55d0e674fc51a1f8b604f859ec086973 |
---|---|
cites | cdi_FETCH-LOGICAL-a3806-e321f9d4f89fad6af0f806351805ab30c55d0e674fc51a1f8b604f859ec086973 |
container_end_page | 840 |
container_issue | 6 |
container_start_page | 827 |
container_title | Ground water |
container_volume | 55 |
creator | Knowling, Matthew J. Werner, Adrian D. |
description | The estimation of recharge through groundwater model calibration is hampered by the nonuniqueness of recharge and aquifer parameter values. It has been shown recently that the estimability of spatially distributed recharge through calibration of steady‐state models for practical situations (i.e., real‐world, field‐scale aquifer settings) is limited by the need for excessive amounts of hydraulic‐parameter and groundwater‐level data. However, the extent to which temporal recharge variability can be informed through transient model calibration, which involves larger water‐level datasets, but requires the additional consideration of storage parameters, is presently unknown for practical situations. In this study, time‐varying recharge estimates, inferred through calibration of a field‐scale highly parameterized groundwater model, are systematically investigated subject to changes in (1) the degree to which hydraulic parameters including hydraulic conductivity (K) and specific yield (Sy) are constrained, (2) the number of water‐level calibration targets, and (3) the temporal resolution (up to monthly time steps) at which recharge is estimated. The analysis involves the use of a synthetic reality (a reference model) based on a groundwater model of Uley South Basin, South Australia. Identifiability statistics are used to evaluate the ability of recharge and hydraulic parameters to be estimated uniquely. Results show that reasonable estimates of monthly recharge ( |
doi_str_mv | 10.1111/gwat.12526 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899109869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1964266024</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3806-e321f9d4f89fad6af0f806351805ab30c55d0e674fc51a1f8b604f859ec086973</originalsourceid><addsrcrecordid>eNp90MFKJDEQBuCwrKyj62UfYGnYiwjtVrqTdHKUQUdBEXREbyHdXZmJZLrdpBuZm4_gM_okRkf3sIetS6D4-FP8hPygcEjT_F48muGQFrwQX8iEVozngkv2lUwAaJUzUd1tk50Y7wGgVKC-ke1CMiWZ5BNyPQ-miw67IbvCZmnCArPjOLiVqZ13wzqbL0M_LpbZiUPfvjw9XzfGYzZLy65N_2LILvoWfTY13tXBDK7vvpMta3zEvY93l9ycHM-np_n55exsenSem1KCyLEsqFUts1JZ0wpjwaZ1yakEbuoSGs5bQFEx23BqqJW1gIS5wgakUFW5S_Y3uQ-h_zNiHPTKxQa9Nx32Y9RUKkVBJZvor3_ofT-GLl2nqRKsEAIKltTBRjWhjzGg1Q8hNRHWmoJ-q1q_Va3fq07450fkWK-w_Us_u02AbsCj87j-T5Se3R7NN6GvuPKJqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964266024</pqid></control><display><type>article</type><title>Transient Recharge Estimability Through Field‐Scale Groundwater Model Calibration</title><source>Wiley</source><creator>Knowling, Matthew J. ; Werner, Adrian D.</creator><creatorcontrib>Knowling, Matthew J. ; Werner, Adrian D.</creatorcontrib><description>The estimation of recharge through groundwater model calibration is hampered by the nonuniqueness of recharge and aquifer parameter values. It has been shown recently that the estimability of spatially distributed recharge through calibration of steady‐state models for practical situations (i.e., real‐world, field‐scale aquifer settings) is limited by the need for excessive amounts of hydraulic‐parameter and groundwater‐level data. However, the extent to which temporal recharge variability can be informed through transient model calibration, which involves larger water‐level datasets, but requires the additional consideration of storage parameters, is presently unknown for practical situations. In this study, time‐varying recharge estimates, inferred through calibration of a field‐scale highly parameterized groundwater model, are systematically investigated subject to changes in (1) the degree to which hydraulic parameters including hydraulic conductivity (K) and specific yield (Sy) are constrained, (2) the number of water‐level calibration targets, and (3) the temporal resolution (up to monthly time steps) at which recharge is estimated. The analysis involves the use of a synthetic reality (a reference model) based on a groundwater model of Uley South Basin, South Australia. Identifiability statistics are used to evaluate the ability of recharge and hydraulic parameters to be estimated uniquely. Results show that reasonable estimates of monthly recharge (<30% recharge root‐mean‐squared error) require a considerable amount of transient water‐level data, and that the spatial distribution of K is known. Joint estimation of recharge, Sy and K, however, precludes reasonable inference of recharge and hydraulic parameter values. We conclude that the estimation of temporal recharge variability through calibration may be impractical for real‐world settings.</description><identifier>ISSN: 0017-467X</identifier><identifier>EISSN: 1745-6584</identifier><identifier>DOI: 10.1111/gwat.12526</identifier><identifier>PMID: 28498485</identifier><language>eng</language><publisher>Malden, US: Blackwell Publishing Ltd</publisher><subject>Aquifers ; Calibration ; Groundwater ; Groundwater data ; Groundwater levels ; Groundwater recharge ; Hydraulics ; Mathematical models ; Models, Theoretical ; Parameter estimation ; Parameters ; Scale (ratio) ; South Australia ; Spatial data ; Spatial distribution ; Specific yield ; Statistical analysis ; Statistical methods ; Steady state models ; Storage ; Temporal resolution ; Variability ; Water levels ; Water Movements</subject><ispartof>Ground water, 2017-11, Vol.55 (6), p.827-840</ispartof><rights>2017, National Ground Water Association.</rights><rights>Groundwater © 2017, National Ground Water Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3806-e321f9d4f89fad6af0f806351805ab30c55d0e674fc51a1f8b604f859ec086973</citedby><cites>FETCH-LOGICAL-a3806-e321f9d4f89fad6af0f806351805ab30c55d0e674fc51a1f8b604f859ec086973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28498485$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knowling, Matthew J.</creatorcontrib><creatorcontrib>Werner, Adrian D.</creatorcontrib><title>Transient Recharge Estimability Through Field‐Scale Groundwater Model Calibration</title><title>Ground water</title><addtitle>Ground Water</addtitle><description>The estimation of recharge through groundwater model calibration is hampered by the nonuniqueness of recharge and aquifer parameter values. It has been shown recently that the estimability of spatially distributed recharge through calibration of steady‐state models for practical situations (i.e., real‐world, field‐scale aquifer settings) is limited by the need for excessive amounts of hydraulic‐parameter and groundwater‐level data. However, the extent to which temporal recharge variability can be informed through transient model calibration, which involves larger water‐level datasets, but requires the additional consideration of storage parameters, is presently unknown for practical situations. In this study, time‐varying recharge estimates, inferred through calibration of a field‐scale highly parameterized groundwater model, are systematically investigated subject to changes in (1) the degree to which hydraulic parameters including hydraulic conductivity (K) and specific yield (Sy) are constrained, (2) the number of water‐level calibration targets, and (3) the temporal resolution (up to monthly time steps) at which recharge is estimated. The analysis involves the use of a synthetic reality (a reference model) based on a groundwater model of Uley South Basin, South Australia. Identifiability statistics are used to evaluate the ability of recharge and hydraulic parameters to be estimated uniquely. Results show that reasonable estimates of monthly recharge (<30% recharge root‐mean‐squared error) require a considerable amount of transient water‐level data, and that the spatial distribution of K is known. Joint estimation of recharge, Sy and K, however, precludes reasonable inference of recharge and hydraulic parameter values. We conclude that the estimation of temporal recharge variability through calibration may be impractical for real‐world settings.</description><subject>Aquifers</subject><subject>Calibration</subject><subject>Groundwater</subject><subject>Groundwater data</subject><subject>Groundwater levels</subject><subject>Groundwater recharge</subject><subject>Hydraulics</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Scale (ratio)</subject><subject>South Australia</subject><subject>Spatial data</subject><subject>Spatial distribution</subject><subject>Specific yield</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Steady state models</subject><subject>Storage</subject><subject>Temporal resolution</subject><subject>Variability</subject><subject>Water levels</subject><subject>Water Movements</subject><issn>0017-467X</issn><issn>1745-6584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90MFKJDEQBuCwrKyj62UfYGnYiwjtVrqTdHKUQUdBEXREbyHdXZmJZLrdpBuZm4_gM_okRkf3sIetS6D4-FP8hPygcEjT_F48muGQFrwQX8iEVozngkv2lUwAaJUzUd1tk50Y7wGgVKC-ke1CMiWZ5BNyPQ-miw67IbvCZmnCArPjOLiVqZ13wzqbL0M_LpbZiUPfvjw9XzfGYzZLy65N_2LILvoWfTY13tXBDK7vvpMta3zEvY93l9ycHM-np_n55exsenSem1KCyLEsqFUts1JZ0wpjwaZ1yakEbuoSGs5bQFEx23BqqJW1gIS5wgakUFW5S_Y3uQ-h_zNiHPTKxQa9Nx32Y9RUKkVBJZvor3_ofT-GLl2nqRKsEAIKltTBRjWhjzGg1Q8hNRHWmoJ-q1q_Va3fq07450fkWK-w_Us_u02AbsCj87j-T5Se3R7NN6GvuPKJqg</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Knowling, Matthew J.</creator><creator>Werner, Adrian D.</creator><general>Blackwell Publishing Ltd</general><general>Ground Water Publishing Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201711</creationdate><title>Transient Recharge Estimability Through Field‐Scale Groundwater Model Calibration</title><author>Knowling, Matthew J. ; Werner, Adrian D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3806-e321f9d4f89fad6af0f806351805ab30c55d0e674fc51a1f8b604f859ec086973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aquifers</topic><topic>Calibration</topic><topic>Groundwater</topic><topic>Groundwater data</topic><topic>Groundwater levels</topic><topic>Groundwater recharge</topic><topic>Hydraulics</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Scale (ratio)</topic><topic>South Australia</topic><topic>Spatial data</topic><topic>Spatial distribution</topic><topic>Specific yield</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Steady state models</topic><topic>Storage</topic><topic>Temporal resolution</topic><topic>Variability</topic><topic>Water levels</topic><topic>Water Movements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knowling, Matthew J.</creatorcontrib><creatorcontrib>Werner, Adrian D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ground water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knowling, Matthew J.</au><au>Werner, Adrian D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient Recharge Estimability Through Field‐Scale Groundwater Model Calibration</atitle><jtitle>Ground water</jtitle><addtitle>Ground Water</addtitle><date>2017-11</date><risdate>2017</risdate><volume>55</volume><issue>6</issue><spage>827</spage><epage>840</epage><pages>827-840</pages><issn>0017-467X</issn><eissn>1745-6584</eissn><abstract>The estimation of recharge through groundwater model calibration is hampered by the nonuniqueness of recharge and aquifer parameter values. It has been shown recently that the estimability of spatially distributed recharge through calibration of steady‐state models for practical situations (i.e., real‐world, field‐scale aquifer settings) is limited by the need for excessive amounts of hydraulic‐parameter and groundwater‐level data. However, the extent to which temporal recharge variability can be informed through transient model calibration, which involves larger water‐level datasets, but requires the additional consideration of storage parameters, is presently unknown for practical situations. In this study, time‐varying recharge estimates, inferred through calibration of a field‐scale highly parameterized groundwater model, are systematically investigated subject to changes in (1) the degree to which hydraulic parameters including hydraulic conductivity (K) and specific yield (Sy) are constrained, (2) the number of water‐level calibration targets, and (3) the temporal resolution (up to monthly time steps) at which recharge is estimated. The analysis involves the use of a synthetic reality (a reference model) based on a groundwater model of Uley South Basin, South Australia. Identifiability statistics are used to evaluate the ability of recharge and hydraulic parameters to be estimated uniquely. Results show that reasonable estimates of monthly recharge (<30% recharge root‐mean‐squared error) require a considerable amount of transient water‐level data, and that the spatial distribution of K is known. Joint estimation of recharge, Sy and K, however, precludes reasonable inference of recharge and hydraulic parameter values. We conclude that the estimation of temporal recharge variability through calibration may be impractical for real‐world settings.</abstract><cop>Malden, US</cop><pub>Blackwell Publishing Ltd</pub><pmid>28498485</pmid><doi>10.1111/gwat.12526</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-467X |
ispartof | Ground water, 2017-11, Vol.55 (6), p.827-840 |
issn | 0017-467X 1745-6584 |
language | eng |
recordid | cdi_proquest_miscellaneous_1899109869 |
source | Wiley |
subjects | Aquifers Calibration Groundwater Groundwater data Groundwater levels Groundwater recharge Hydraulics Mathematical models Models, Theoretical Parameter estimation Parameters Scale (ratio) South Australia Spatial data Spatial distribution Specific yield Statistical analysis Statistical methods Steady state models Storage Temporal resolution Variability Water levels Water Movements |
title | Transient Recharge Estimability Through Field‐Scale Groundwater Model Calibration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20Recharge%20Estimability%20Through%20Field%E2%80%90Scale%20Groundwater%20Model%20Calibration&rft.jtitle=Ground%20water&rft.au=Knowling,%20Matthew%20J.&rft.date=2017-11&rft.volume=55&rft.issue=6&rft.spage=827&rft.epage=840&rft.pages=827-840&rft.issn=0017-467X&rft.eissn=1745-6584&rft_id=info:doi/10.1111/gwat.12526&rft_dat=%3Cproquest_cross%3E1964266024%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3806-e321f9d4f89fad6af0f806351805ab30c55d0e674fc51a1f8b604f859ec086973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1964266024&rft_id=info:pmid/28498485&rfr_iscdi=true |