Loading…

Estimation of the prevalence of adverse drug reactions from social media

Highlights • Word2vec was utilized to discover variants of adverse drug reaction (ADR) terms in social media data. • The prevalence of ADR derived from social media using original lexicon has a decent correlation with that from official sources. • The lexicon derived by word2vec improved the correla...

Full description

Saved in:
Bibliographic Details
Published in:International journal of medical informatics (Shannon, Ireland) Ireland), 2017-06, Vol.102, p.130-137
Main Authors: Nguyen, Thin, Larsen, Mark E, O’Dea, Bridianne, Phung, Dinh, Venkatesh, Svetha, Christensen, Helen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-b9128b070669eb99d9cfe55739b01b7959807353229d71514ad984b95b122dd33
cites cdi_FETCH-LOGICAL-c423t-b9128b070669eb99d9cfe55739b01b7959807353229d71514ad984b95b122dd33
container_end_page 137
container_issue
container_start_page 130
container_title International journal of medical informatics (Shannon, Ireland)
container_volume 102
creator Nguyen, Thin
Larsen, Mark E
O’Dea, Bridianne
Phung, Dinh
Venkatesh, Svetha
Christensen, Helen
description Highlights • Word2vec was utilized to discover variants of adverse drug reaction (ADR) terms in social media data. • The prevalence of ADR derived from social media using original lexicon has a decent correlation with that from official sources. • The lexicon derived by word2vec improved the correlation. • Advanced cluster computing was employed to process 6.4 terabytes of data containing 3.8 billion records.
doi_str_mv 10.1016/j.ijmedinf.2017.03.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899110005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1386505617300746</els_id><sourcerecordid>1899110005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-b9128b070669eb99d9cfe55739b01b7959807353229d71514ad984b95b122dd33</originalsourceid><addsrcrecordid>eNqFkU1v1DAQQKMKREvLX6hy5JIwY8dxfEGgqtBKlThAz5ZjT4pDNl7sZKX--zralgOXnmzZb77eFMUlQo2A7aex9uOOnJ-HmgHKGngNyE-KM-wkqzrW8Df5zru2EiDa0-J9SiNkEETzrjhlXaMEb_CsuLlOi9-ZxYe5DEO5_KZyH-lgJpotbS_GHSgmKl1cH8pIxm5oKocYdmUK1pup3PowF8XbwUyJPjyf58X9t-tfVzfV3Y_vt1df7yrbML5UvULW9SChbRX1SjllBxJCctUD9lIJ1YHkgjOmnESBjXGqa3olemTMOc7Pi4_HvPsY_q6UFr3zydI0mZnCmjR2SiECgMhoe0RtDClFGvQ-5lnjo0bQm0U96heLerOogetsMQdePtdY-_z9L-xFWwa-HAHKkx48RZ2s34w5H8ku2gX_eo3P_6Wwk5-9NdMfeqQ0hjXO2aNGnZgG_XPb5bZKlBxANi1_AnkImf8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899110005</pqid></control><display><type>article</type><title>Estimation of the prevalence of adverse drug reactions from social media</title><source>ScienceDirect Journals</source><creator>Nguyen, Thin ; Larsen, Mark E ; O’Dea, Bridianne ; Phung, Dinh ; Venkatesh, Svetha ; Christensen, Helen</creator><creatorcontrib>Nguyen, Thin ; Larsen, Mark E ; O’Dea, Bridianne ; Phung, Dinh ; Venkatesh, Svetha ; Christensen, Helen</creatorcontrib><description>Highlights • Word2vec was utilized to discover variants of adverse drug reaction (ADR) terms in social media data. • The prevalence of ADR derived from social media using original lexicon has a decent correlation with that from official sources. • The lexicon derived by word2vec improved the correlation. • Advanced cluster computing was employed to process 6.4 terabytes of data containing 3.8 billion records.</description><identifier>ISSN: 1386-5056</identifier><identifier>EISSN: 1872-8243</identifier><identifier>DOI: 10.1016/j.ijmedinf.2017.03.013</identifier><identifier>PMID: 28495341</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Adverse drug reactions ; Australia - epidemiology ; Consumer health informatics ; Databases, Factual ; Drug informatics ; Drug-Related Side Effects and Adverse Reactions - epidemiology ; Drug-Related Side Effects and Adverse Reactions - prevention &amp; control ; Humans ; Internal Medicine ; Machine Learning ; Other ; Prevalence ; Social media ; Social Media - utilization ; Word embedding ; Word representation</subject><ispartof>International journal of medical informatics (Shannon, Ireland), 2017-06, Vol.102, p.130-137</ispartof><rights>Elsevier B.V.</rights><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-b9128b070669eb99d9cfe55739b01b7959807353229d71514ad984b95b122dd33</citedby><cites>FETCH-LOGICAL-c423t-b9128b070669eb99d9cfe55739b01b7959807353229d71514ad984b95b122dd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28495341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Thin</creatorcontrib><creatorcontrib>Larsen, Mark E</creatorcontrib><creatorcontrib>O’Dea, Bridianne</creatorcontrib><creatorcontrib>Phung, Dinh</creatorcontrib><creatorcontrib>Venkatesh, Svetha</creatorcontrib><creatorcontrib>Christensen, Helen</creatorcontrib><title>Estimation of the prevalence of adverse drug reactions from social media</title><title>International journal of medical informatics (Shannon, Ireland)</title><addtitle>Int J Med Inform</addtitle><description>Highlights • Word2vec was utilized to discover variants of adverse drug reaction (ADR) terms in social media data. • The prevalence of ADR derived from social media using original lexicon has a decent correlation with that from official sources. • The lexicon derived by word2vec improved the correlation. • Advanced cluster computing was employed to process 6.4 terabytes of data containing 3.8 billion records.</description><subject>Adverse drug reactions</subject><subject>Australia - epidemiology</subject><subject>Consumer health informatics</subject><subject>Databases, Factual</subject><subject>Drug informatics</subject><subject>Drug-Related Side Effects and Adverse Reactions - epidemiology</subject><subject>Drug-Related Side Effects and Adverse Reactions - prevention &amp; control</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Machine Learning</subject><subject>Other</subject><subject>Prevalence</subject><subject>Social media</subject><subject>Social Media - utilization</subject><subject>Word embedding</subject><subject>Word representation</subject><issn>1386-5056</issn><issn>1872-8243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQQKMKREvLX6hy5JIwY8dxfEGgqtBKlThAz5ZjT4pDNl7sZKX--zralgOXnmzZb77eFMUlQo2A7aex9uOOnJ-HmgHKGngNyE-KM-wkqzrW8Df5zru2EiDa0-J9SiNkEETzrjhlXaMEb_CsuLlOi9-ZxYe5DEO5_KZyH-lgJpotbS_GHSgmKl1cH8pIxm5oKocYdmUK1pup3PowF8XbwUyJPjyf58X9t-tfVzfV3Y_vt1df7yrbML5UvULW9SChbRX1SjllBxJCctUD9lIJ1YHkgjOmnESBjXGqa3olemTMOc7Pi4_HvPsY_q6UFr3zydI0mZnCmjR2SiECgMhoe0RtDClFGvQ-5lnjo0bQm0U96heLerOogetsMQdePtdY-_z9L-xFWwa-HAHKkx48RZ2s34w5H8ku2gX_eo3P_6Wwk5-9NdMfeqQ0hjXO2aNGnZgG_XPb5bZKlBxANi1_AnkImf8</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Nguyen, Thin</creator><creator>Larsen, Mark E</creator><creator>O’Dea, Bridianne</creator><creator>Phung, Dinh</creator><creator>Venkatesh, Svetha</creator><creator>Christensen, Helen</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170601</creationdate><title>Estimation of the prevalence of adverse drug reactions from social media</title><author>Nguyen, Thin ; Larsen, Mark E ; O’Dea, Bridianne ; Phung, Dinh ; Venkatesh, Svetha ; Christensen, Helen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-b9128b070669eb99d9cfe55739b01b7959807353229d71514ad984b95b122dd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adverse drug reactions</topic><topic>Australia - epidemiology</topic><topic>Consumer health informatics</topic><topic>Databases, Factual</topic><topic>Drug informatics</topic><topic>Drug-Related Side Effects and Adverse Reactions - epidemiology</topic><topic>Drug-Related Side Effects and Adverse Reactions - prevention &amp; control</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Machine Learning</topic><topic>Other</topic><topic>Prevalence</topic><topic>Social media</topic><topic>Social Media - utilization</topic><topic>Word embedding</topic><topic>Word representation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Thin</creatorcontrib><creatorcontrib>Larsen, Mark E</creatorcontrib><creatorcontrib>O’Dea, Bridianne</creatorcontrib><creatorcontrib>Phung, Dinh</creatorcontrib><creatorcontrib>Venkatesh, Svetha</creatorcontrib><creatorcontrib>Christensen, Helen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of medical informatics (Shannon, Ireland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Thin</au><au>Larsen, Mark E</au><au>O’Dea, Bridianne</au><au>Phung, Dinh</au><au>Venkatesh, Svetha</au><au>Christensen, Helen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the prevalence of adverse drug reactions from social media</atitle><jtitle>International journal of medical informatics (Shannon, Ireland)</jtitle><addtitle>Int J Med Inform</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>102</volume><spage>130</spage><epage>137</epage><pages>130-137</pages><issn>1386-5056</issn><eissn>1872-8243</eissn><abstract>Highlights • Word2vec was utilized to discover variants of adverse drug reaction (ADR) terms in social media data. • The prevalence of ADR derived from social media using original lexicon has a decent correlation with that from official sources. • The lexicon derived by word2vec improved the correlation. • Advanced cluster computing was employed to process 6.4 terabytes of data containing 3.8 billion records.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>28495341</pmid><doi>10.1016/j.ijmedinf.2017.03.013</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-5056
ispartof International journal of medical informatics (Shannon, Ireland), 2017-06, Vol.102, p.130-137
issn 1386-5056
1872-8243
language eng
recordid cdi_proquest_miscellaneous_1899110005
source ScienceDirect Journals
subjects Adverse drug reactions
Australia - epidemiology
Consumer health informatics
Databases, Factual
Drug informatics
Drug-Related Side Effects and Adverse Reactions - epidemiology
Drug-Related Side Effects and Adverse Reactions - prevention & control
Humans
Internal Medicine
Machine Learning
Other
Prevalence
Social media
Social Media - utilization
Word embedding
Word representation
title Estimation of the prevalence of adverse drug reactions from social media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20prevalence%20of%20adverse%20drug%20reactions%20from%20social%20media&rft.jtitle=International%20journal%20of%20medical%20informatics%20(Shannon,%20Ireland)&rft.au=Nguyen,%20Thin&rft.date=2017-06-01&rft.volume=102&rft.spage=130&rft.epage=137&rft.pages=130-137&rft.issn=1386-5056&rft.eissn=1872-8243&rft_id=info:doi/10.1016/j.ijmedinf.2017.03.013&rft_dat=%3Cproquest_cross%3E1899110005%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-b9128b070669eb99d9cfe55739b01b7959807353229d71514ad984b95b122dd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899110005&rft_id=info:pmid/28495341&rfr_iscdi=true