Dapagliflozin modulates glucagon secretion in an SGLT2-independent manner in murine alpha cells

Abstract Aim SGLT2 inhibitors reduce renal glucose uptake through an insulin-independent mechanism. They also increase glucagon concentration, although the extent to which this is due to a direct effect on pancreatic alpha cells remains unclear. Methods In the present work, αTC1 cells treated with t...

Full description

Saved in:
Bibliographic Details
Published in:Diabetes & metabolism 2017-12, Vol.43 (6), p.512-520
Main Authors: Solini, A, Sebastiani, G, Nigi, L, Santini, E, Rossi, C, Dotta, F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Aim SGLT2 inhibitors reduce renal glucose uptake through an insulin-independent mechanism. They also increase glucagon concentration, although the extent to which this is due to a direct effect on pancreatic alpha cells remains unclear. Methods In the present work, αTC1 cells treated with the SGLT2 inhibitor dapagliflozin (Dapa) were analyzed for glucose transporters, molecular mediators of hormone secretion, glucagon and GLP-1 release, and the effects of somatostatin. Data were validated in murine and human pancreatic islets. Results SLC5A2 (the SGLT2-encoding gene) was nearly undetectable in αTC1 cells, not even by a digital PCR technique using different probes. In contrast, SLC5A1 (the SGLT1-encoding gene) was constitutively abundant in αTC1 cells and in islets, and increased with Dapa. This was associated with greater glucagon release, preceded by increased expression of preproglucagon and HNF4α. Looking at the candidate intracellular signalling pathway, reduced PASK and increased AMPK-α2 expression were also detected. GLUT1 and GLUT2, as well as regulators of glucagon release and alpha-cell phenotype (chromogranin A, paired box 6, proprotein convertase 1/2, synaptophysin), were unaffected by Dapa, as were GLP-1 receptor expression and GLP-1 release. Low glucose did not influence the stimulatory effect of Dapa on glucagon release, but was instead almost fully reverted by SLC5A1 silencing. When the effect of Dapa on AMPK and PASK, emerging regulators of lipid and glucose metabolism, was tested, upregulated AMPK-α2 appeared to be involved in molecular signalling. Conclusion Our study has shown that, in αTC1 cells, Dapa acutely upregulates SGLT1 expression and increases glucagon release through an SGLT1-dependent mechanism, with SGLT2 expression virtually undetectable. These results suggest the involvement of SGLT1 in modulating glucagon increases following SGLT2 inhibition.
ISSN:1262-3636
1878-1780
DOI:10.1016/j.diabet.2017.04.002