Loading…

In Situ Observation of Twin Boundary Sliding in Single Crystalline Cu Nanowires

Using a homemade, novel, in situ transmission electron microscopy (TEM) double tilt tensile device, plastic behavior of single crystalline Cu nanowires of around 150 nm are studied. Deformation twins occur during the tests as predesigned before the experiments. In situ observation of twin boundary s...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2017-07, Vol.13 (25), p.n/a
Main Authors: Yue, Yonghai, Zhang, Qi, Zhang, Xuejiao, Yang, Zhenyu, Yin, Penggang, Guo, Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4396-86789080468c3d35dbc2729a72d1a2ca86fa927fdfbd02bb50bcf4bad671e8b13
cites cdi_FETCH-LOGICAL-c4396-86789080468c3d35dbc2729a72d1a2ca86fa927fdfbd02bb50bcf4bad671e8b13
container_end_page n/a
container_issue 25
container_start_page
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 13
creator Yue, Yonghai
Zhang, Qi
Zhang, Xuejiao
Yang, Zhenyu
Yin, Penggang
Guo, Lin
description Using a homemade, novel, in situ transmission electron microscopy (TEM) double tilt tensile device, plastic behavior of single crystalline Cu nanowires of around 150 nm are studied. Deformation twins occur during the tests as predesigned before the experiments. In situ observation of twin boundary sliding (TBS) caused by full dislocation (extended dislocation) is first revealed at the atomic scale which is confirmed by molecular dynamics (MD) simulation results. Combined with twin boundary migration and multiple dislocations nucleated from surface, TBS causes a superlarge fracture strain which is over 166% and a severe necking which is over 93%, far beyond the typical values for most nanomaterials without twins. In situ observation of twin boundary sliding (TBS) caused by full dislocation (extended dislocation) is first revealed at the atomic scale. Combined with twin boundary migration and multiple dislocations nucleated from the surface, TBS causes a fracture strain of ≈166% and a severe necking of ≈93%, far beyond the typical values for most nanomaterials without twins.
doi_str_mv 10.1002/smll.201604296
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899406228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1915309853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4396-86789080468c3d35dbc2729a72d1a2ca86fa927fdfbd02bb50bcf4bad671e8b13</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EoqWwMiJLLCwptpM49ggVH5UKHVpmy46dypXrFDuh6r8nVUuRWJjeHc47eu8CcI3RECNE7uPKuSFBmKKMcHoC-pjiNKGM8NNjxqgHLmJcIpRikhXnoEdYjlhOSB9Mxx7ObNPCqYomfMnG1h7WFZxvrIePdeu1DFs4c1Zbv4B2B_uFM3AUtrGRzlnf5Ra-S19vbDDxEpxV0kVzdZgD8PH8NB-9JpPpy3j0MEnKLOU0YbRgHDGUUVamOs21KklBuCyIxpKUktFKclJUulIaEaVypMoqU1LTAhumcDoAd3vvOtSfrYmNWNlYGuekN3UbBWacZ4gSwjr09g-6rNvgu-sE5jhPEWd52lHDPVWGOsZgKrEOdtU9LzASu6rFrmpxrLpbuDloW7Uy-oj_dNsBfA9srDPbf3Ri9jaZ_Mq_Aat0iic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915309853</pqid></control><display><type>article</type><title>In Situ Observation of Twin Boundary Sliding in Single Crystalline Cu Nanowires</title><source>Wiley</source><creator>Yue, Yonghai ; Zhang, Qi ; Zhang, Xuejiao ; Yang, Zhenyu ; Yin, Penggang ; Guo, Lin</creator><creatorcontrib>Yue, Yonghai ; Zhang, Qi ; Zhang, Xuejiao ; Yang, Zhenyu ; Yin, Penggang ; Guo, Lin</creatorcontrib><description>Using a homemade, novel, in situ transmission electron microscopy (TEM) double tilt tensile device, plastic behavior of single crystalline Cu nanowires of around 150 nm are studied. Deformation twins occur during the tests as predesigned before the experiments. In situ observation of twin boundary sliding (TBS) caused by full dislocation (extended dislocation) is first revealed at the atomic scale which is confirmed by molecular dynamics (MD) simulation results. Combined with twin boundary migration and multiple dislocations nucleated from surface, TBS causes a superlarge fracture strain which is over 166% and a severe necking which is over 93%, far beyond the typical values for most nanomaterials without twins. In situ observation of twin boundary sliding (TBS) caused by full dislocation (extended dislocation) is first revealed at the atomic scale. Combined with twin boundary migration and multiple dislocations nucleated from the surface, TBS causes a fracture strain of ≈166% and a severe necking of ≈93%, far beyond the typical values for most nanomaterials without twins.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201604296</identifier><identifier>PMID: 28508522</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Crystal structure ; Deformation ; Deformation mechanisms ; Dislocations ; Electrons ; in situ ; Microstructure ; Migration ; Molecular dynamics ; Nanomaterials ; Nanotechnology ; Nanowires ; Necking ; single crystalline Cu nanowires ; Sliding ; Strain ; Transmission electron microscopy ; twin boundary sliding</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2017-07, Vol.13 (25), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4396-86789080468c3d35dbc2729a72d1a2ca86fa927fdfbd02bb50bcf4bad671e8b13</citedby><cites>FETCH-LOGICAL-c4396-86789080468c3d35dbc2729a72d1a2ca86fa927fdfbd02bb50bcf4bad671e8b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28508522$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yue, Yonghai</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Zhang, Xuejiao</creatorcontrib><creatorcontrib>Yang, Zhenyu</creatorcontrib><creatorcontrib>Yin, Penggang</creatorcontrib><creatorcontrib>Guo, Lin</creatorcontrib><title>In Situ Observation of Twin Boundary Sliding in Single Crystalline Cu Nanowires</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Using a homemade, novel, in situ transmission electron microscopy (TEM) double tilt tensile device, plastic behavior of single crystalline Cu nanowires of around 150 nm are studied. Deformation twins occur during the tests as predesigned before the experiments. In situ observation of twin boundary sliding (TBS) caused by full dislocation (extended dislocation) is first revealed at the atomic scale which is confirmed by molecular dynamics (MD) simulation results. Combined with twin boundary migration and multiple dislocations nucleated from surface, TBS causes a superlarge fracture strain which is over 166% and a severe necking which is over 93%, far beyond the typical values for most nanomaterials without twins. In situ observation of twin boundary sliding (TBS) caused by full dislocation (extended dislocation) is first revealed at the atomic scale. Combined with twin boundary migration and multiple dislocations nucleated from the surface, TBS causes a fracture strain of ≈166% and a severe necking of ≈93%, far beyond the typical values for most nanomaterials without twins.</description><subject>Crystal structure</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Dislocations</subject><subject>Electrons</subject><subject>in situ</subject><subject>Microstructure</subject><subject>Migration</subject><subject>Molecular dynamics</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Necking</subject><subject>single crystalline Cu nanowires</subject><subject>Sliding</subject><subject>Strain</subject><subject>Transmission electron microscopy</subject><subject>twin boundary sliding</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EoqWwMiJLLCwptpM49ggVH5UKHVpmy46dypXrFDuh6r8nVUuRWJjeHc47eu8CcI3RECNE7uPKuSFBmKKMcHoC-pjiNKGM8NNjxqgHLmJcIpRikhXnoEdYjlhOSB9Mxx7ObNPCqYomfMnG1h7WFZxvrIePdeu1DFs4c1Zbv4B2B_uFM3AUtrGRzlnf5Ra-S19vbDDxEpxV0kVzdZgD8PH8NB-9JpPpy3j0MEnKLOU0YbRgHDGUUVamOs21KklBuCyIxpKUktFKclJUulIaEaVypMoqU1LTAhumcDoAd3vvOtSfrYmNWNlYGuekN3UbBWacZ4gSwjr09g-6rNvgu-sE5jhPEWd52lHDPVWGOsZgKrEOdtU9LzASu6rFrmpxrLpbuDloW7Uy-oj_dNsBfA9srDPbf3Ri9jaZ_Mq_Aat0iic</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Yue, Yonghai</creator><creator>Zhang, Qi</creator><creator>Zhang, Xuejiao</creator><creator>Yang, Zhenyu</creator><creator>Yin, Penggang</creator><creator>Guo, Lin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201707</creationdate><title>In Situ Observation of Twin Boundary Sliding in Single Crystalline Cu Nanowires</title><author>Yue, Yonghai ; Zhang, Qi ; Zhang, Xuejiao ; Yang, Zhenyu ; Yin, Penggang ; Guo, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4396-86789080468c3d35dbc2729a72d1a2ca86fa927fdfbd02bb50bcf4bad671e8b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Crystal structure</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Dislocations</topic><topic>Electrons</topic><topic>in situ</topic><topic>Microstructure</topic><topic>Migration</topic><topic>Molecular dynamics</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Necking</topic><topic>single crystalline Cu nanowires</topic><topic>Sliding</topic><topic>Strain</topic><topic>Transmission electron microscopy</topic><topic>twin boundary sliding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Yonghai</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Zhang, Xuejiao</creatorcontrib><creatorcontrib>Yang, Zhenyu</creatorcontrib><creatorcontrib>Yin, Penggang</creatorcontrib><creatorcontrib>Guo, Lin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Yonghai</au><au>Zhang, Qi</au><au>Zhang, Xuejiao</au><au>Yang, Zhenyu</au><au>Yin, Penggang</au><au>Guo, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Observation of Twin Boundary Sliding in Single Crystalline Cu Nanowires</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2017-07</date><risdate>2017</risdate><volume>13</volume><issue>25</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Using a homemade, novel, in situ transmission electron microscopy (TEM) double tilt tensile device, plastic behavior of single crystalline Cu nanowires of around 150 nm are studied. Deformation twins occur during the tests as predesigned before the experiments. In situ observation of twin boundary sliding (TBS) caused by full dislocation (extended dislocation) is first revealed at the atomic scale which is confirmed by molecular dynamics (MD) simulation results. Combined with twin boundary migration and multiple dislocations nucleated from surface, TBS causes a superlarge fracture strain which is over 166% and a severe necking which is over 93%, far beyond the typical values for most nanomaterials without twins. In situ observation of twin boundary sliding (TBS) caused by full dislocation (extended dislocation) is first revealed at the atomic scale. Combined with twin boundary migration and multiple dislocations nucleated from the surface, TBS causes a fracture strain of ≈166% and a severe necking of ≈93%, far beyond the typical values for most nanomaterials without twins.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28508522</pmid><doi>10.1002/smll.201604296</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2017-07, Vol.13 (25), p.n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_1899406228
source Wiley
subjects Crystal structure
Deformation
Deformation mechanisms
Dislocations
Electrons
in situ
Microstructure
Migration
Molecular dynamics
Nanomaterials
Nanotechnology
Nanowires
Necking
single crystalline Cu nanowires
Sliding
Strain
Transmission electron microscopy
twin boundary sliding
title In Situ Observation of Twin Boundary Sliding in Single Crystalline Cu Nanowires
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Observation%20of%20Twin%20Boundary%20Sliding%20in%20Single%20Crystalline%20Cu%20Nanowires&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Yue,%20Yonghai&rft.date=2017-07&rft.volume=13&rft.issue=25&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201604296&rft_dat=%3Cproquest_cross%3E1915309853%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4396-86789080468c3d35dbc2729a72d1a2ca86fa927fdfbd02bb50bcf4bad671e8b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1915309853&rft_id=info:pmid/28508522&rfr_iscdi=true