Loading…
Manipulating Ion Migration for Highly Stable Light-Emitting Diodes with Single-Crystalline Organometal Halide Perovskite Microplatelets
Ion migration has been commonly observed as a detrimental phenomenon in organometal halide perovskite semiconductors, causing the measurement hysteresis in solar cells and ultrashort operation lifetimes in light-emitting diodes. In this work, ion migration is utilized for the formation of a p-i-n ju...
Saved in:
Published in: | ACS nano 2017-06, Vol.11 (6), p.6312-6318 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ion migration has been commonly observed as a detrimental phenomenon in organometal halide perovskite semiconductors, causing the measurement hysteresis in solar cells and ultrashort operation lifetimes in light-emitting diodes. In this work, ion migration is utilized for the formation of a p-i-n junction at ambient temperature in single-crystalline organometal halide perovskites. The junction is subsequently stabilized by quenching the ionic movement at a low temperature. Such a strategy of manipulating the ion migration has led to efficient single-crystalline light-emitting diodes that emit 2.3 eV photons starting at 1.8 V and sustain a continuous operation for 54 h at ∼5000 cd m–2 without degradation of brightness. In addition, a whispering-gallery-mode cavity and exciton–exciton interaction in the perovskite microplatelets have both been observed that can be potentially useful for achieving electrically driven laser diodes based on single-crystalline organometal halide perovskite semiconductors. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.7b02629 |