Loading…

Assessing greenhouse gas emissions from electric vehicle operation in Australia using temporal vehicle charging and electricity emission characteristics

Significant interest exists in the potential for electric vehicles (EVs) to be a source of greenhouse gas (GHG) abatement. In order to establish the extent to which EVs will deliver abatement, however, a realistic understanding of the electricity and transport sector GHG emissions impacts arising fr...

Full description

Saved in:
Bibliographic Details
Published in:International journal of sustainable transportation 2017-01, Vol.11 (1), p.20-30
Main Authors: Mills, Graham, MacGill, Iain
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Significant interest exists in the potential for electric vehicles (EVs) to be a source of greenhouse gas (GHG) abatement. In order to establish the extent to which EVs will deliver abatement, however, a realistic understanding of the electricity and transport sector GHG emissions impacts arising from different approaches to integrating EVs into the power system is required. A key issue in this regard is the extent to which GHG emissions are a function of where and when EV charging will be enabled (or disabled) by the provision of recharging infrastructure and implementation of charging management strategies by the electricity industry. This article presents an investigation of the GHG emissions arising from electricity and gasoline consumption by plug-in hybrid EVs under a range of standard EV-power system integration scenarios. An assessment framework is presented, and GHG emissions from EV use are assessed for the New South Wales (NSW) and South Australian (SA) pools of the Australian National Electricity Market (NEM) using retrospective electricity system generation data for 2011. Results highlight that there is a range of possible outcomes depending on the integration scenario and emissions accounting approach used. This range illustrates value of a temporally explicit assessment approach in capturing the temporal alignment of electricity sector emission intensity and EV charging. Results also show the importance of a clean electricity generation mix in order for EVs to provide a GHG abatement benefit beyond what would be achieved by a hybrid (but non-plug-in) vehicle. The extent to which overnight charging in NSW is observed to produce higher emissions relative to unmanaged charging also illustrates a possible trade-off between GHG emissions and benefits for electricity industry from EV charging at times of low demand.
ISSN:1556-8318
1556-8334
DOI:10.1080/15568318.2015.1106243