Loading…

Angiotensin II induces calcium/calcineurin signaling and podocyte injury by downregulating microRNA-30 family members

Angiotensin II (AngII) is capable of inducing calcium/calcineurin signaling and podocyte injury; however, the precise underlying mechanism is not well understood. Because we have previously demonstrated that microRNA-30s (miR-30s) inhibit calcium/calcineurin signaling in podocytes, we hypothesize th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular medicine (Berlin, Germany) Germany), 2017-08, Vol.95 (8), p.887-898
Main Authors: Zhao, Yue, Wu, Junnan, Zhang, Mingchao, Zhou, Minlin, Xu, Feng, Zhu, Xiaodong, Zhou, Xianguang, Lang, Yue, Yang, Fan, Yun, Shifeng, Shi, Shaolin, Liu, Zhihong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-40fbbab960f4d77ff469acba9e009b2ef0d7e00fff9093cf717f565c59ef01263
cites cdi_FETCH-LOGICAL-c372t-40fbbab960f4d77ff469acba9e009b2ef0d7e00fff9093cf717f565c59ef01263
container_end_page 898
container_issue 8
container_start_page 887
container_title Journal of molecular medicine (Berlin, Germany)
container_volume 95
creator Zhao, Yue
Wu, Junnan
Zhang, Mingchao
Zhou, Minlin
Xu, Feng
Zhu, Xiaodong
Zhou, Xianguang
Lang, Yue
Yang, Fan
Yun, Shifeng
Shi, Shaolin
Liu, Zhihong
description Angiotensin II (AngII) is capable of inducing calcium/calcineurin signaling and podocyte injury; however, the precise underlying mechanism is not well understood. Because we have previously demonstrated that microRNA-30s (miR-30s) inhibit calcium/calcineurin signaling in podocytes, we hypothesize that AngII may induce podocyte injury by downregulating miR-30s and thereby activating calcium/calcineurin signaling. To test this hypothesis, we used an AngII-induced podocyte injury mouse model. The mice were treated with AngII via infusion for 28 days, which resulted in hypertension, albuminuria, and glomerular damage. AngII treatment also resulted in a significant reduction of miR-30s and upregulation of calcium/calcineurin signaling components, including TRPC6, PPP3CA, PPP3CB, PPP3R1, and NFATC3, which are the known targets of miR-30s in podocytes. The delivery of miR-30a-expressing lentivirus to the podocytes on day 14 of the infusion ameliorated the AngII-induced podocyte and glomerular injury and attenuated the upregulation of the calcium/calcineurin signaling components. Similarly, treatment with losartan, which is an AngII receptor blocker, also prevented AngII-induced podocyte injury and calcium/calcineurin signaling activation. Notably, losartan was found to sustain miR-30 levels during AngII treatment both in vivo and in vitro. In conclusion, the effect of AngII on podocytes is in part mediated by miR-30s through calcium/calcineurin signaling, a novel mechanism underlying AngII-induced podocyte injury. Key messages • AngII infusion resulted in downregulation of miR-30s in podocytes. • Exogenous miR-30a delivery mitigated the glomerular and podocyte injuries induced by AngII. • Both miR-30a and losartan prevented AngII-induced activation of calcium-calcineurin signaling.
doi_str_mv 10.1007/s00109-017-1547-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1902480189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1919877433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-40fbbab960f4d77ff469acba9e009b2ef0d7e00fff9093cf717f565c59ef01263</originalsourceid><addsrcrecordid>eNp1kVFL5DAUhYOs6Kz6A3xZAvviS_SmTZvJ4yC77oAoiD6HNE1KhjYdkwapv96Mo8uy4NMNnO-ccO9B6JzCJQXgVxGAgiBAOaEV4-T1AC0oKwtCGYNvaAGC1aTgtD5G32PcZJpXgh2h42JZMWAgFiitfOfGyfjoPF6vsfNt0iZirXrt0nD1Pr1JIcvRdV71zndY-RZvx3bU82SyZZPCjJsZt-OLD6ZLvZp21OB0GB_uVqQEbNXg-hkPZmhMiKfo0Ko-mrOPeYKefv96vP5Dbu9v1terW6JLXkyEgW0a1YgaLGs5t5bVQulGCQMgmsJYaHl-WmsFiFJbTrmt6kpXIku0qMsTdLHP3YbxOZk4ycFFbfpeeTOmKKmAgi2BLkVGf_6HbsYU8r47iool56wsM0X3VN4sxmCs3AY3qDBLCnLXidx3IvOp5a4T-Zo9Pz6SUzOY9q_js4QMFHsgZsl3Jvzz9ZepbxV5mRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919877433</pqid></control><display><type>article</type><title>Angiotensin II induces calcium/calcineurin signaling and podocyte injury by downregulating microRNA-30 family members</title><source>Springer Nature</source><creator>Zhao, Yue ; Wu, Junnan ; Zhang, Mingchao ; Zhou, Minlin ; Xu, Feng ; Zhu, Xiaodong ; Zhou, Xianguang ; Lang, Yue ; Yang, Fan ; Yun, Shifeng ; Shi, Shaolin ; Liu, Zhihong</creator><creatorcontrib>Zhao, Yue ; Wu, Junnan ; Zhang, Mingchao ; Zhou, Minlin ; Xu, Feng ; Zhu, Xiaodong ; Zhou, Xianguang ; Lang, Yue ; Yang, Fan ; Yun, Shifeng ; Shi, Shaolin ; Liu, Zhihong</creatorcontrib><description>Angiotensin II (AngII) is capable of inducing calcium/calcineurin signaling and podocyte injury; however, the precise underlying mechanism is not well understood. Because we have previously demonstrated that microRNA-30s (miR-30s) inhibit calcium/calcineurin signaling in podocytes, we hypothesize that AngII may induce podocyte injury by downregulating miR-30s and thereby activating calcium/calcineurin signaling. To test this hypothesis, we used an AngII-induced podocyte injury mouse model. The mice were treated with AngII via infusion for 28 days, which resulted in hypertension, albuminuria, and glomerular damage. AngII treatment also resulted in a significant reduction of miR-30s and upregulation of calcium/calcineurin signaling components, including TRPC6, PPP3CA, PPP3CB, PPP3R1, and NFATC3, which are the known targets of miR-30s in podocytes. The delivery of miR-30a-expressing lentivirus to the podocytes on day 14 of the infusion ameliorated the AngII-induced podocyte and glomerular injury and attenuated the upregulation of the calcium/calcineurin signaling components. Similarly, treatment with losartan, which is an AngII receptor blocker, also prevented AngII-induced podocyte injury and calcium/calcineurin signaling activation. Notably, losartan was found to sustain miR-30 levels during AngII treatment both in vivo and in vitro. In conclusion, the effect of AngII on podocytes is in part mediated by miR-30s through calcium/calcineurin signaling, a novel mechanism underlying AngII-induced podocyte injury. Key messages • AngII infusion resulted in downregulation of miR-30s in podocytes. • Exogenous miR-30a delivery mitigated the glomerular and podocyte injuries induced by AngII. • Both miR-30a and losartan prevented AngII-induced activation of calcium-calcineurin signaling.</description><identifier>ISSN: 0946-2716</identifier><identifier>EISSN: 1432-1440</identifier><identifier>DOI: 10.1007/s00109-017-1547-z</identifier><identifier>PMID: 28540409</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activation ; Angiotensin ; Angiotensin II ; Angiotensin II - pharmacology ; Angiotensin II Type 1 Receptor Blockers - pharmacology ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Calcineurin ; Calcineurin - metabolism ; Calcium ; Calcium - metabolism ; Calcium Signaling - drug effects ; Calcium signalling ; Cells, Cultured ; Down-Regulation ; Human Genetics ; Humans ; Hypertension - metabolism ; Hypertension - pathology ; Internal Medicine ; Kidney Diseases - metabolism ; Kidney Diseases - pathology ; Kidney Glomerulus - drug effects ; Kidney Glomerulus - metabolism ; Kidney Glomerulus - pathology ; Losartan - pharmacology ; Male ; Mice, Inbred C57BL ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Molecular Medicine ; Original Article ; Podocytes - drug effects ; Podocytes - metabolism ; Podocytes - pathology ; Rodents</subject><ispartof>Journal of molecular medicine (Berlin, Germany), 2017-08, Vol.95 (8), p.887-898</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Journal of Molecular Medicine is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-40fbbab960f4d77ff469acba9e009b2ef0d7e00fff9093cf717f565c59ef01263</citedby><cites>FETCH-LOGICAL-c372t-40fbbab960f4d77ff469acba9e009b2ef0d7e00fff9093cf717f565c59ef01263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28540409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Wu, Junnan</creatorcontrib><creatorcontrib>Zhang, Mingchao</creatorcontrib><creatorcontrib>Zhou, Minlin</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Zhu, Xiaodong</creatorcontrib><creatorcontrib>Zhou, Xianguang</creatorcontrib><creatorcontrib>Lang, Yue</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Yun, Shifeng</creatorcontrib><creatorcontrib>Shi, Shaolin</creatorcontrib><creatorcontrib>Liu, Zhihong</creatorcontrib><title>Angiotensin II induces calcium/calcineurin signaling and podocyte injury by downregulating microRNA-30 family members</title><title>Journal of molecular medicine (Berlin, Germany)</title><addtitle>J Mol Med</addtitle><addtitle>J Mol Med (Berl)</addtitle><description>Angiotensin II (AngII) is capable of inducing calcium/calcineurin signaling and podocyte injury; however, the precise underlying mechanism is not well understood. Because we have previously demonstrated that microRNA-30s (miR-30s) inhibit calcium/calcineurin signaling in podocytes, we hypothesize that AngII may induce podocyte injury by downregulating miR-30s and thereby activating calcium/calcineurin signaling. To test this hypothesis, we used an AngII-induced podocyte injury mouse model. The mice were treated with AngII via infusion for 28 days, which resulted in hypertension, albuminuria, and glomerular damage. AngII treatment also resulted in a significant reduction of miR-30s and upregulation of calcium/calcineurin signaling components, including TRPC6, PPP3CA, PPP3CB, PPP3R1, and NFATC3, which are the known targets of miR-30s in podocytes. The delivery of miR-30a-expressing lentivirus to the podocytes on day 14 of the infusion ameliorated the AngII-induced podocyte and glomerular injury and attenuated the upregulation of the calcium/calcineurin signaling components. Similarly, treatment with losartan, which is an AngII receptor blocker, also prevented AngII-induced podocyte injury and calcium/calcineurin signaling activation. Notably, losartan was found to sustain miR-30 levels during AngII treatment both in vivo and in vitro. In conclusion, the effect of AngII on podocytes is in part mediated by miR-30s through calcium/calcineurin signaling, a novel mechanism underlying AngII-induced podocyte injury. Key messages • AngII infusion resulted in downregulation of miR-30s in podocytes. • Exogenous miR-30a delivery mitigated the glomerular and podocyte injuries induced by AngII. • Both miR-30a and losartan prevented AngII-induced activation of calcium-calcineurin signaling.</description><subject>Activation</subject><subject>Angiotensin</subject><subject>Angiotensin II</subject><subject>Angiotensin II - pharmacology</subject><subject>Angiotensin II Type 1 Receptor Blockers - pharmacology</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Calcineurin</subject><subject>Calcineurin - metabolism</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium signalling</subject><subject>Cells, Cultured</subject><subject>Down-Regulation</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Hypertension - metabolism</subject><subject>Hypertension - pathology</subject><subject>Internal Medicine</subject><subject>Kidney Diseases - metabolism</subject><subject>Kidney Diseases - pathology</subject><subject>Kidney Glomerulus - drug effects</subject><subject>Kidney Glomerulus - metabolism</subject><subject>Kidney Glomerulus - pathology</subject><subject>Losartan - pharmacology</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Molecular Medicine</subject><subject>Original Article</subject><subject>Podocytes - drug effects</subject><subject>Podocytes - metabolism</subject><subject>Podocytes - pathology</subject><subject>Rodents</subject><issn>0946-2716</issn><issn>1432-1440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kVFL5DAUhYOs6Kz6A3xZAvviS_SmTZvJ4yC77oAoiD6HNE1KhjYdkwapv96Mo8uy4NMNnO-ccO9B6JzCJQXgVxGAgiBAOaEV4-T1AC0oKwtCGYNvaAGC1aTgtD5G32PcZJpXgh2h42JZMWAgFiitfOfGyfjoPF6vsfNt0iZirXrt0nD1Pr1JIcvRdV71zndY-RZvx3bU82SyZZPCjJsZt-OLD6ZLvZp21OB0GB_uVqQEbNXg-hkPZmhMiKfo0Ko-mrOPeYKefv96vP5Dbu9v1terW6JLXkyEgW0a1YgaLGs5t5bVQulGCQMgmsJYaHl-WmsFiFJbTrmt6kpXIku0qMsTdLHP3YbxOZk4ycFFbfpeeTOmKKmAgi2BLkVGf_6HbsYU8r47iool56wsM0X3VN4sxmCs3AY3qDBLCnLXidx3IvOp5a4T-Zo9Pz6SUzOY9q_js4QMFHsgZsl3Jvzz9ZepbxV5mRw</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Zhao, Yue</creator><creator>Wu, Junnan</creator><creator>Zhang, Mingchao</creator><creator>Zhou, Minlin</creator><creator>Xu, Feng</creator><creator>Zhu, Xiaodong</creator><creator>Zhou, Xianguang</creator><creator>Lang, Yue</creator><creator>Yang, Fan</creator><creator>Yun, Shifeng</creator><creator>Shi, Shaolin</creator><creator>Liu, Zhihong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20170801</creationdate><title>Angiotensin II induces calcium/calcineurin signaling and podocyte injury by downregulating microRNA-30 family members</title><author>Zhao, Yue ; Wu, Junnan ; Zhang, Mingchao ; Zhou, Minlin ; Xu, Feng ; Zhu, Xiaodong ; Zhou, Xianguang ; Lang, Yue ; Yang, Fan ; Yun, Shifeng ; Shi, Shaolin ; Liu, Zhihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-40fbbab960f4d77ff469acba9e009b2ef0d7e00fff9093cf717f565c59ef01263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Angiotensin</topic><topic>Angiotensin II</topic><topic>Angiotensin II - pharmacology</topic><topic>Angiotensin II Type 1 Receptor Blockers - pharmacology</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Calcineurin</topic><topic>Calcineurin - metabolism</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium signalling</topic><topic>Cells, Cultured</topic><topic>Down-Regulation</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Hypertension - metabolism</topic><topic>Hypertension - pathology</topic><topic>Internal Medicine</topic><topic>Kidney Diseases - metabolism</topic><topic>Kidney Diseases - pathology</topic><topic>Kidney Glomerulus - drug effects</topic><topic>Kidney Glomerulus - metabolism</topic><topic>Kidney Glomerulus - pathology</topic><topic>Losartan - pharmacology</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Molecular Medicine</topic><topic>Original Article</topic><topic>Podocytes - drug effects</topic><topic>Podocytes - metabolism</topic><topic>Podocytes - pathology</topic><topic>Rodents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Wu, Junnan</creatorcontrib><creatorcontrib>Zhang, Mingchao</creatorcontrib><creatorcontrib>Zhou, Minlin</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Zhu, Xiaodong</creatorcontrib><creatorcontrib>Zhou, Xianguang</creatorcontrib><creatorcontrib>Lang, Yue</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Yun, Shifeng</creatorcontrib><creatorcontrib>Shi, Shaolin</creatorcontrib><creatorcontrib>Liu, Zhihong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular medicine (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yue</au><au>Wu, Junnan</au><au>Zhang, Mingchao</au><au>Zhou, Minlin</au><au>Xu, Feng</au><au>Zhu, Xiaodong</au><au>Zhou, Xianguang</au><au>Lang, Yue</au><au>Yang, Fan</au><au>Yun, Shifeng</au><au>Shi, Shaolin</au><au>Liu, Zhihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angiotensin II induces calcium/calcineurin signaling and podocyte injury by downregulating microRNA-30 family members</atitle><jtitle>Journal of molecular medicine (Berlin, Germany)</jtitle><stitle>J Mol Med</stitle><addtitle>J Mol Med (Berl)</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>95</volume><issue>8</issue><spage>887</spage><epage>898</epage><pages>887-898</pages><issn>0946-2716</issn><eissn>1432-1440</eissn><abstract>Angiotensin II (AngII) is capable of inducing calcium/calcineurin signaling and podocyte injury; however, the precise underlying mechanism is not well understood. Because we have previously demonstrated that microRNA-30s (miR-30s) inhibit calcium/calcineurin signaling in podocytes, we hypothesize that AngII may induce podocyte injury by downregulating miR-30s and thereby activating calcium/calcineurin signaling. To test this hypothesis, we used an AngII-induced podocyte injury mouse model. The mice were treated with AngII via infusion for 28 days, which resulted in hypertension, albuminuria, and glomerular damage. AngII treatment also resulted in a significant reduction of miR-30s and upregulation of calcium/calcineurin signaling components, including TRPC6, PPP3CA, PPP3CB, PPP3R1, and NFATC3, which are the known targets of miR-30s in podocytes. The delivery of miR-30a-expressing lentivirus to the podocytes on day 14 of the infusion ameliorated the AngII-induced podocyte and glomerular injury and attenuated the upregulation of the calcium/calcineurin signaling components. Similarly, treatment with losartan, which is an AngII receptor blocker, also prevented AngII-induced podocyte injury and calcium/calcineurin signaling activation. Notably, losartan was found to sustain miR-30 levels during AngII treatment both in vivo and in vitro. In conclusion, the effect of AngII on podocytes is in part mediated by miR-30s through calcium/calcineurin signaling, a novel mechanism underlying AngII-induced podocyte injury. Key messages • AngII infusion resulted in downregulation of miR-30s in podocytes. • Exogenous miR-30a delivery mitigated the glomerular and podocyte injuries induced by AngII. • Both miR-30a and losartan prevented AngII-induced activation of calcium-calcineurin signaling.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28540409</pmid><doi>10.1007/s00109-017-1547-z</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0946-2716
ispartof Journal of molecular medicine (Berlin, Germany), 2017-08, Vol.95 (8), p.887-898
issn 0946-2716
1432-1440
language eng
recordid cdi_proquest_miscellaneous_1902480189
source Springer Nature
subjects Activation
Angiotensin
Angiotensin II
Angiotensin II - pharmacology
Angiotensin II Type 1 Receptor Blockers - pharmacology
Animals
Biomedical and Life Sciences
Biomedicine
Calcineurin
Calcineurin - metabolism
Calcium
Calcium - metabolism
Calcium Signaling - drug effects
Calcium signalling
Cells, Cultured
Down-Regulation
Human Genetics
Humans
Hypertension - metabolism
Hypertension - pathology
Internal Medicine
Kidney Diseases - metabolism
Kidney Diseases - pathology
Kidney Glomerulus - drug effects
Kidney Glomerulus - metabolism
Kidney Glomerulus - pathology
Losartan - pharmacology
Male
Mice, Inbred C57BL
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Molecular Medicine
Original Article
Podocytes - drug effects
Podocytes - metabolism
Podocytes - pathology
Rodents
title Angiotensin II induces calcium/calcineurin signaling and podocyte injury by downregulating microRNA-30 family members
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angiotensin%20II%20induces%20calcium/calcineurin%20signaling%20and%20podocyte%20injury%20by%20downregulating%20microRNA-30%20family%20members&rft.jtitle=Journal%20of%20molecular%20medicine%20(Berlin,%20Germany)&rft.au=Zhao,%20Yue&rft.date=2017-08-01&rft.volume=95&rft.issue=8&rft.spage=887&rft.epage=898&rft.pages=887-898&rft.issn=0946-2716&rft.eissn=1432-1440&rft_id=info:doi/10.1007/s00109-017-1547-z&rft_dat=%3Cproquest_cross%3E1919877433%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-40fbbab960f4d77ff469acba9e009b2ef0d7e00fff9093cf717f565c59ef01263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1919877433&rft_id=info:pmid/28540409&rfr_iscdi=true