Loading…
Double-Quantum Spin-Relaxation Limits to Coherence of Near-Surface Nitrogen-Vacancy Centers
We probe the relaxation dynamics of the full three-level spin system of near-surface nitrogen-vacancy (NV) centers in diamond to define a T_{1} relaxation time that sets the T_{2}≤2T_{1} coherence limit of the NV's subset qubit superpositions. We find that double-quantum spin relaxation via ele...
Saved in:
Published in: | Physical review letters 2017-05, Vol.118 (19), p.197201-197201, Article 197201 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We probe the relaxation dynamics of the full three-level spin system of near-surface nitrogen-vacancy (NV) centers in diamond to define a T_{1} relaxation time that sets the T_{2}≤2T_{1} coherence limit of the NV's subset qubit superpositions. We find that double-quantum spin relaxation via electric field noise dominates T_{1} of near-surface NVs at low applied magnetic fields. Furthermore, we differentiate 1/f^{α} spectra of electric and magnetic field noise using a novel noise-spectroscopy technique, with broad applications in probing surface-induced decoherence at material interfaces. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.118.197201 |