Loading…
A Critical Review on Ultrasensitive, Spectroscopic-based Methods for High-throughput Monitoring of Bacteria during Infection Treatment
The world is in the midst of a pre-emptive public health emergency, one that is just as dramatic as the global aggressive viruses-related crises (Ebola, Zika, or SARS), but not as visible. The "superbugs" and their antimicrobial resistance do not cause much public alarm or awareness, but p...
Saved in:
Published in: | Critical reviews in analytical chemistry 2017-11, Vol.47 (6), p.499-512 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The world is in the midst of a pre-emptive public health emergency, one that is just as dramatic as the global aggressive viruses-related crises (Ebola, Zika, or SARS), but not as visible. The "superbugs" and their antimicrobial resistance do not cause much public alarm or awareness, but provoke financial losses of $100 trillion annually (WHO,
http://www.who.int/mediacentre/commentaries/superbugs-action-now/en/
).
This status quo review offers an overview of ultrasensitive methods for high-throughput monitoring of bacteria during infection treatment, the effects of antibiotics on bacteria at single-cell level and the challenges we will face in their detection due to the extraordinary capability of these "superbugs" to gain and constantly improve multiresistance to antibiotics. A special emphasis is put on the ultrasensitive spectroscopic-based analysis techniques, using nanotechnology or not necessarily, that are more and more promising alternatives to conventional culture-based ones. The particular case of Mycobacteria detection is discussed based on recent reported work. |
---|---|
ISSN: | 1040-8347 1547-6510 |
DOI: | 10.1080/10408347.2017.1332974 |