Loading…
Expression and Characterization of Hyperthermostable Exopolygalacturonase RmGH28 from Rhodothermus marinus
The gene RmGH28 from the organism Rhodothermus marinus , a putative glycosyl hydrolase family 28 polygalacturonase, was expressed in Escherichia coli and biochemically characterized. The gene was found to encode an exopolygalacturonase termed RmGH28, with galacturonic acid monomer and the polymer su...
Saved in:
Published in: | Applied biochemistry and biotechnology 2017-12, Vol.183 (4), p.1503-1515 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-4817f86877c9e32d5aa3a1ed884c58b3aa73040d945d3f1ea9a4a83743c51b823 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-4817f86877c9e32d5aa3a1ed884c58b3aa73040d945d3f1ea9a4a83743c51b823 |
container_end_page | 1515 |
container_issue | 4 |
container_start_page | 1503 |
container_title | Applied biochemistry and biotechnology |
container_volume | 183 |
creator | Wagschal, Kurt C. Rose Stoller, J. Chan, Victor J. Jordan, Douglas B. |
description | The gene
RmGH28
from the organism
Rhodothermus marinus
, a putative glycosyl hydrolase family 28 polygalacturonase, was expressed in
Escherichia coli
and biochemically characterized. The gene was found to encode an exopolygalacturonase termed RmGH28, with galacturonic acid monomer and the polymer substrate (n-1) as the products released when acting on de-esterified polygalacturonic acid from citrus pectin. The enzyme at 25 °C had
k
cat
∼6 s
−1
when acting on polygalacturonic acid, with
K
m
∼0.7 μM and a substrate inhibition constant
K
si
∼70 μM. The enzyme was hyperthermophilic, with one half initial enzyme activity remaining after 1-h incubation at 93.9 °C. Since the enzyme can function at high temperatures where reaction rates are increased and the risk of bacterial contamination is decreased, this indicates that RmGH28 can be useful in industry for generating galacturonic acid from pectin. The amino acid sequence of RmGH28 is highly homologous to the known hyperthermophilic exopolygalacturonases TtGH28 and Tm0437, which together can serve as starting points for structure-function studies and molecular breeding enzyme engineering approaches. |
doi_str_mv | 10.1007/s12010-017-2518-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1903941436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1966816177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-4817f86877c9e32d5aa3a1ed884c58b3aa73040d945d3f1ea9a4a83743c51b823</originalsourceid><addsrcrecordid>eNp1kV-L1DAUxYMo7rjrB_BFCr74Uvfe_GmSRxnGHWFhYXGfw5023enQNjVpYcdPb8ZZRQSfDiS_c3JvDmPvED4hgL5OyAGhBNQlV2hKeMFWqJQtgVt8yVbAtSg5N_aCvUnpAIDcKP2aXWRRilu1YofN0xR9Sl0YCxqbYr2nSPXsY_eD5tNhaIvtcfJx3vs4hDTTrvfF5ilMoT8-Up_ZJYaRki_uh5stN0Ubw1Dc70MTflmWVAwUu3FJV-xVS33yb5_1kj182Xxbb8vbu5uv68-3ZS3BzqU0qFtTGa1r6wVvFJEg9I0xslZmJ4i0AAmNlaoRLXqyJMkILUWtcGe4uGQfz7lTDN8Xn2Y3dKn2fU-jD0tyaEFYiVJUGf3wD3oISxzzdJmqKoMVap0pPFN1DClF37opdnmpo0NwpyLcuQiXi3CnIhxkz_vn5GU3-OaP4_fPZ4CfgZSvxkcf_3r6v6k_ASiwlAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966816177</pqid></control><display><type>article</type><title>Expression and Characterization of Hyperthermostable Exopolygalacturonase RmGH28 from Rhodothermus marinus</title><source>Springer Nature</source><creator>Wagschal, Kurt C. ; Rose Stoller, J. ; Chan, Victor J. ; Jordan, Douglas B.</creator><creatorcontrib>Wagschal, Kurt C. ; Rose Stoller, J. ; Chan, Victor J. ; Jordan, Douglas B.</creatorcontrib><description>The gene
RmGH28
from the organism
Rhodothermus marinus
, a putative glycosyl hydrolase family 28 polygalacturonase, was expressed in
Escherichia coli
and biochemically characterized. The gene was found to encode an exopolygalacturonase termed RmGH28, with galacturonic acid monomer and the polymer substrate (n-1) as the products released when acting on de-esterified polygalacturonic acid from citrus pectin. The enzyme at 25 °C had
k
cat
∼6 s
−1
when acting on polygalacturonic acid, with
K
m
∼0.7 μM and a substrate inhibition constant
K
si
∼70 μM. The enzyme was hyperthermophilic, with one half initial enzyme activity remaining after 1-h incubation at 93.9 °C. Since the enzyme can function at high temperatures where reaction rates are increased and the risk of bacterial contamination is decreased, this indicates that RmGH28 can be useful in industry for generating galacturonic acid from pectin. The amino acid sequence of RmGH28 is highly homologous to the known hyperthermophilic exopolygalacturonases TtGH28 and Tm0437, which together can serve as starting points for structure-function studies and molecular breeding enzyme engineering approaches.</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1007/s12010-017-2518-0</identifier><identifier>PMID: 28555295</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amino acid sequence ; Amino acids ; Bacteria ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Biochemistry ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Contamination ; E coli ; Enzymatic activity ; Enzyme activity ; Enzyme Stability ; Enzymes ; Escherichia coli ; Esterification ; Gene Expression ; Genes ; Glycoside Hydrolases - biosynthesis ; Glycoside Hydrolases - chemistry ; Glycoside Hydrolases - genetics ; Glycosyl hydrolase ; High temperature ; Homology ; Hot Temperature ; Molecular structure ; Organisms ; Pectin ; Polygalacturonase ; Polygalacturonic acid ; Polymers ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Rhodothermus - enzymology ; Rhodothermus - genetics ; Rhodothermus marinus ; Structure-function relationships ; Substrate inhibition</subject><ispartof>Applied biochemistry and biotechnology, 2017-12, Vol.183 (4), p.1503-1515</ispartof><rights>Springer Science+Business Media New York (outside the USA) 2017</rights><rights>Applied Biochemistry and Biotechnology is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-4817f86877c9e32d5aa3a1ed884c58b3aa73040d945d3f1ea9a4a83743c51b823</citedby><cites>FETCH-LOGICAL-c409t-4817f86877c9e32d5aa3a1ed884c58b3aa73040d945d3f1ea9a4a83743c51b823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28555295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagschal, Kurt C.</creatorcontrib><creatorcontrib>Rose Stoller, J.</creatorcontrib><creatorcontrib>Chan, Victor J.</creatorcontrib><creatorcontrib>Jordan, Douglas B.</creatorcontrib><title>Expression and Characterization of Hyperthermostable Exopolygalacturonase RmGH28 from Rhodothermus marinus</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><addtitle>Appl Biochem Biotechnol</addtitle><description>The gene
RmGH28
from the organism
Rhodothermus marinus
, a putative glycosyl hydrolase family 28 polygalacturonase, was expressed in
Escherichia coli
and biochemically characterized. The gene was found to encode an exopolygalacturonase termed RmGH28, with galacturonic acid monomer and the polymer substrate (n-1) as the products released when acting on de-esterified polygalacturonic acid from citrus pectin. The enzyme at 25 °C had
k
cat
∼6 s
−1
when acting on polygalacturonic acid, with
K
m
∼0.7 μM and a substrate inhibition constant
K
si
∼70 μM. The enzyme was hyperthermophilic, with one half initial enzyme activity remaining after 1-h incubation at 93.9 °C. Since the enzyme can function at high temperatures where reaction rates are increased and the risk of bacterial contamination is decreased, this indicates that RmGH28 can be useful in industry for generating galacturonic acid from pectin. The amino acid sequence of RmGH28 is highly homologous to the known hyperthermophilic exopolygalacturonases TtGH28 and Tm0437, which together can serve as starting points for structure-function studies and molecular breeding enzyme engineering approaches.</description><subject>Amino acid sequence</subject><subject>Amino acids</subject><subject>Bacteria</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Biochemistry</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Contamination</subject><subject>E coli</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Esterification</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Glycoside Hydrolases - biosynthesis</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Glycoside Hydrolases - genetics</subject><subject>Glycosyl hydrolase</subject><subject>High temperature</subject><subject>Homology</subject><subject>Hot Temperature</subject><subject>Molecular structure</subject><subject>Organisms</subject><subject>Pectin</subject><subject>Polygalacturonase</subject><subject>Polygalacturonic acid</subject><subject>Polymers</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Rhodothermus - enzymology</subject><subject>Rhodothermus - genetics</subject><subject>Rhodothermus marinus</subject><subject>Structure-function relationships</subject><subject>Substrate inhibition</subject><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kV-L1DAUxYMo7rjrB_BFCr74Uvfe_GmSRxnGHWFhYXGfw5023enQNjVpYcdPb8ZZRQSfDiS_c3JvDmPvED4hgL5OyAGhBNQlV2hKeMFWqJQtgVt8yVbAtSg5N_aCvUnpAIDcKP2aXWRRilu1YofN0xR9Sl0YCxqbYr2nSPXsY_eD5tNhaIvtcfJx3vs4hDTTrvfF5ilMoT8-Up_ZJYaRki_uh5stN0Ubw1Dc70MTflmWVAwUu3FJV-xVS33yb5_1kj182Xxbb8vbu5uv68-3ZS3BzqU0qFtTGa1r6wVvFJEg9I0xslZmJ4i0AAmNlaoRLXqyJMkILUWtcGe4uGQfz7lTDN8Xn2Y3dKn2fU-jD0tyaEFYiVJUGf3wD3oISxzzdJmqKoMVap0pPFN1DClF37opdnmpo0NwpyLcuQiXi3CnIhxkz_vn5GU3-OaP4_fPZ4CfgZSvxkcf_3r6v6k_ASiwlAU</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Wagschal, Kurt C.</creator><creator>Rose Stoller, J.</creator><creator>Chan, Victor J.</creator><creator>Jordan, Douglas B.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20171201</creationdate><title>Expression and Characterization of Hyperthermostable Exopolygalacturonase RmGH28 from Rhodothermus marinus</title><author>Wagschal, Kurt C. ; Rose Stoller, J. ; Chan, Victor J. ; Jordan, Douglas B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-4817f86877c9e32d5aa3a1ed884c58b3aa73040d945d3f1ea9a4a83743c51b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino acid sequence</topic><topic>Amino acids</topic><topic>Bacteria</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Biochemistry</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Contamination</topic><topic>E coli</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Esterification</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Glycoside Hydrolases - biosynthesis</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Glycoside Hydrolases - genetics</topic><topic>Glycosyl hydrolase</topic><topic>High temperature</topic><topic>Homology</topic><topic>Hot Temperature</topic><topic>Molecular structure</topic><topic>Organisms</topic><topic>Pectin</topic><topic>Polygalacturonase</topic><topic>Polygalacturonic acid</topic><topic>Polymers</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Rhodothermus - enzymology</topic><topic>Rhodothermus - genetics</topic><topic>Rhodothermus marinus</topic><topic>Structure-function relationships</topic><topic>Substrate inhibition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagschal, Kurt C.</creatorcontrib><creatorcontrib>Rose Stoller, J.</creatorcontrib><creatorcontrib>Chan, Victor J.</creatorcontrib><creatorcontrib>Jordan, Douglas B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagschal, Kurt C.</au><au>Rose Stoller, J.</au><au>Chan, Victor J.</au><au>Jordan, Douglas B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression and Characterization of Hyperthermostable Exopolygalacturonase RmGH28 from Rhodothermus marinus</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><stitle>Appl Biochem Biotechnol</stitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>183</volume><issue>4</issue><spage>1503</spage><epage>1515</epage><pages>1503-1515</pages><issn>0273-2289</issn><eissn>1559-0291</eissn><abstract>The gene
RmGH28
from the organism
Rhodothermus marinus
, a putative glycosyl hydrolase family 28 polygalacturonase, was expressed in
Escherichia coli
and biochemically characterized. The gene was found to encode an exopolygalacturonase termed RmGH28, with galacturonic acid monomer and the polymer substrate (n-1) as the products released when acting on de-esterified polygalacturonic acid from citrus pectin. The enzyme at 25 °C had
k
cat
∼6 s
−1
when acting on polygalacturonic acid, with
K
m
∼0.7 μM and a substrate inhibition constant
K
si
∼70 μM. The enzyme was hyperthermophilic, with one half initial enzyme activity remaining after 1-h incubation at 93.9 °C. Since the enzyme can function at high temperatures where reaction rates are increased and the risk of bacterial contamination is decreased, this indicates that RmGH28 can be useful in industry for generating galacturonic acid from pectin. The amino acid sequence of RmGH28 is highly homologous to the known hyperthermophilic exopolygalacturonases TtGH28 and Tm0437, which together can serve as starting points for structure-function studies and molecular breeding enzyme engineering approaches.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>28555295</pmid><doi>10.1007/s12010-017-2518-0</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-2289 |
ispartof | Applied biochemistry and biotechnology, 2017-12, Vol.183 (4), p.1503-1515 |
issn | 0273-2289 1559-0291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1903941436 |
source | Springer Nature |
subjects | Amino acid sequence Amino acids Bacteria Bacterial Proteins - biosynthesis Bacterial Proteins - chemistry Bacterial Proteins - genetics Biochemistry Biotechnology Chemistry Chemistry and Materials Science Contamination E coli Enzymatic activity Enzyme activity Enzyme Stability Enzymes Escherichia coli Esterification Gene Expression Genes Glycoside Hydrolases - biosynthesis Glycoside Hydrolases - chemistry Glycoside Hydrolases - genetics Glycosyl hydrolase High temperature Homology Hot Temperature Molecular structure Organisms Pectin Polygalacturonase Polygalacturonic acid Polymers Recombinant Proteins - biosynthesis Recombinant Proteins - chemistry Recombinant Proteins - genetics Rhodothermus - enzymology Rhodothermus - genetics Rhodothermus marinus Structure-function relationships Substrate inhibition |
title | Expression and Characterization of Hyperthermostable Exopolygalacturonase RmGH28 from Rhodothermus marinus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20and%20Characterization%20of%20Hyperthermostable%20Exopolygalacturonase%20RmGH28%20from%20Rhodothermus%20marinus&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=Wagschal,%20Kurt%20C.&rft.date=2017-12-01&rft.volume=183&rft.issue=4&rft.spage=1503&rft.epage=1515&rft.pages=1503-1515&rft.issn=0273-2289&rft.eissn=1559-0291&rft_id=info:doi/10.1007/s12010-017-2518-0&rft_dat=%3Cproquest_cross%3E1966816177%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-4817f86877c9e32d5aa3a1ed884c58b3aa73040d945d3f1ea9a4a83743c51b823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1966816177&rft_id=info:pmid/28555295&rfr_iscdi=true |