Loading…

Expression and Characterization of Hyperthermostable Exopolygalacturonase RmGH28 from Rhodothermus marinus

The gene RmGH28 from the organism Rhodothermus marinus , a putative glycosyl hydrolase family 28 polygalacturonase, was expressed in Escherichia coli and biochemically characterized. The gene was found to encode an exopolygalacturonase termed RmGH28, with galacturonic acid monomer and the polymer su...

Full description

Saved in:
Bibliographic Details
Published in:Applied biochemistry and biotechnology 2017-12, Vol.183 (4), p.1503-1515
Main Authors: Wagschal, Kurt C., Rose Stoller, J., Chan, Victor J., Jordan, Douglas B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-4817f86877c9e32d5aa3a1ed884c58b3aa73040d945d3f1ea9a4a83743c51b823
cites cdi_FETCH-LOGICAL-c409t-4817f86877c9e32d5aa3a1ed884c58b3aa73040d945d3f1ea9a4a83743c51b823
container_end_page 1515
container_issue 4
container_start_page 1503
container_title Applied biochemistry and biotechnology
container_volume 183
creator Wagschal, Kurt C.
Rose Stoller, J.
Chan, Victor J.
Jordan, Douglas B.
description The gene RmGH28 from the organism Rhodothermus marinus , a putative glycosyl hydrolase family 28 polygalacturonase, was expressed in Escherichia coli and biochemically characterized. The gene was found to encode an exopolygalacturonase termed RmGH28, with galacturonic acid monomer and the polymer substrate (n-1) as the products released when acting on de-esterified polygalacturonic acid from citrus pectin. The enzyme at 25 °C had k cat ∼6 s −1 when acting on polygalacturonic acid, with K m ∼0.7 μM and a substrate inhibition constant K si ∼70 μM. The enzyme was hyperthermophilic, with one half initial enzyme activity remaining after 1-h incubation at 93.9 °C. Since the enzyme can function at high temperatures where reaction rates are increased and the risk of bacterial contamination is decreased, this indicates that RmGH28 can be useful in industry for generating galacturonic acid from pectin. The amino acid sequence of RmGH28 is highly homologous to the known hyperthermophilic exopolygalacturonases TtGH28 and Tm0437, which together can serve as starting points for structure-function studies and molecular breeding enzyme engineering approaches.
doi_str_mv 10.1007/s12010-017-2518-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1903941436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1966816177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-4817f86877c9e32d5aa3a1ed884c58b3aa73040d945d3f1ea9a4a83743c51b823</originalsourceid><addsrcrecordid>eNp1kV-L1DAUxYMo7rjrB_BFCr74Uvfe_GmSRxnGHWFhYXGfw5023enQNjVpYcdPb8ZZRQSfDiS_c3JvDmPvED4hgL5OyAGhBNQlV2hKeMFWqJQtgVt8yVbAtSg5N_aCvUnpAIDcKP2aXWRRilu1YofN0xR9Sl0YCxqbYr2nSPXsY_eD5tNhaIvtcfJx3vs4hDTTrvfF5ilMoT8-Up_ZJYaRki_uh5stN0Ubw1Dc70MTflmWVAwUu3FJV-xVS33yb5_1kj182Xxbb8vbu5uv68-3ZS3BzqU0qFtTGa1r6wVvFJEg9I0xslZmJ4i0AAmNlaoRLXqyJMkILUWtcGe4uGQfz7lTDN8Xn2Y3dKn2fU-jD0tyaEFYiVJUGf3wD3oISxzzdJmqKoMVap0pPFN1DClF37opdnmpo0NwpyLcuQiXi3CnIhxkz_vn5GU3-OaP4_fPZ4CfgZSvxkcf_3r6v6k_ASiwlAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966816177</pqid></control><display><type>article</type><title>Expression and Characterization of Hyperthermostable Exopolygalacturonase RmGH28 from Rhodothermus marinus</title><source>Springer Nature</source><creator>Wagschal, Kurt C. ; Rose Stoller, J. ; Chan, Victor J. ; Jordan, Douglas B.</creator><creatorcontrib>Wagschal, Kurt C. ; Rose Stoller, J. ; Chan, Victor J. ; Jordan, Douglas B.</creatorcontrib><description>The gene RmGH28 from the organism Rhodothermus marinus , a putative glycosyl hydrolase family 28 polygalacturonase, was expressed in Escherichia coli and biochemically characterized. The gene was found to encode an exopolygalacturonase termed RmGH28, with galacturonic acid monomer and the polymer substrate (n-1) as the products released when acting on de-esterified polygalacturonic acid from citrus pectin. The enzyme at 25 °C had k cat ∼6 s −1 when acting on polygalacturonic acid, with K m ∼0.7 μM and a substrate inhibition constant K si ∼70 μM. The enzyme was hyperthermophilic, with one half initial enzyme activity remaining after 1-h incubation at 93.9 °C. Since the enzyme can function at high temperatures where reaction rates are increased and the risk of bacterial contamination is decreased, this indicates that RmGH28 can be useful in industry for generating galacturonic acid from pectin. The amino acid sequence of RmGH28 is highly homologous to the known hyperthermophilic exopolygalacturonases TtGH28 and Tm0437, which together can serve as starting points for structure-function studies and molecular breeding enzyme engineering approaches.</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1007/s12010-017-2518-0</identifier><identifier>PMID: 28555295</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amino acid sequence ; Amino acids ; Bacteria ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Biochemistry ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Contamination ; E coli ; Enzymatic activity ; Enzyme activity ; Enzyme Stability ; Enzymes ; Escherichia coli ; Esterification ; Gene Expression ; Genes ; Glycoside Hydrolases - biosynthesis ; Glycoside Hydrolases - chemistry ; Glycoside Hydrolases - genetics ; Glycosyl hydrolase ; High temperature ; Homology ; Hot Temperature ; Molecular structure ; Organisms ; Pectin ; Polygalacturonase ; Polygalacturonic acid ; Polymers ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Rhodothermus - enzymology ; Rhodothermus - genetics ; Rhodothermus marinus ; Structure-function relationships ; Substrate inhibition</subject><ispartof>Applied biochemistry and biotechnology, 2017-12, Vol.183 (4), p.1503-1515</ispartof><rights>Springer Science+Business Media New York (outside the USA) 2017</rights><rights>Applied Biochemistry and Biotechnology is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-4817f86877c9e32d5aa3a1ed884c58b3aa73040d945d3f1ea9a4a83743c51b823</citedby><cites>FETCH-LOGICAL-c409t-4817f86877c9e32d5aa3a1ed884c58b3aa73040d945d3f1ea9a4a83743c51b823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28555295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagschal, Kurt C.</creatorcontrib><creatorcontrib>Rose Stoller, J.</creatorcontrib><creatorcontrib>Chan, Victor J.</creatorcontrib><creatorcontrib>Jordan, Douglas B.</creatorcontrib><title>Expression and Characterization of Hyperthermostable Exopolygalacturonase RmGH28 from Rhodothermus marinus</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><addtitle>Appl Biochem Biotechnol</addtitle><description>The gene RmGH28 from the organism Rhodothermus marinus , a putative glycosyl hydrolase family 28 polygalacturonase, was expressed in Escherichia coli and biochemically characterized. The gene was found to encode an exopolygalacturonase termed RmGH28, with galacturonic acid monomer and the polymer substrate (n-1) as the products released when acting on de-esterified polygalacturonic acid from citrus pectin. The enzyme at 25 °C had k cat ∼6 s −1 when acting on polygalacturonic acid, with K m ∼0.7 μM and a substrate inhibition constant K si ∼70 μM. The enzyme was hyperthermophilic, with one half initial enzyme activity remaining after 1-h incubation at 93.9 °C. Since the enzyme can function at high temperatures where reaction rates are increased and the risk of bacterial contamination is decreased, this indicates that RmGH28 can be useful in industry for generating galacturonic acid from pectin. The amino acid sequence of RmGH28 is highly homologous to the known hyperthermophilic exopolygalacturonases TtGH28 and Tm0437, which together can serve as starting points for structure-function studies and molecular breeding enzyme engineering approaches.</description><subject>Amino acid sequence</subject><subject>Amino acids</subject><subject>Bacteria</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Biochemistry</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Contamination</subject><subject>E coli</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Esterification</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Glycoside Hydrolases - biosynthesis</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Glycoside Hydrolases - genetics</subject><subject>Glycosyl hydrolase</subject><subject>High temperature</subject><subject>Homology</subject><subject>Hot Temperature</subject><subject>Molecular structure</subject><subject>Organisms</subject><subject>Pectin</subject><subject>Polygalacturonase</subject><subject>Polygalacturonic acid</subject><subject>Polymers</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Rhodothermus - enzymology</subject><subject>Rhodothermus - genetics</subject><subject>Rhodothermus marinus</subject><subject>Structure-function relationships</subject><subject>Substrate inhibition</subject><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kV-L1DAUxYMo7rjrB_BFCr74Uvfe_GmSRxnGHWFhYXGfw5023enQNjVpYcdPb8ZZRQSfDiS_c3JvDmPvED4hgL5OyAGhBNQlV2hKeMFWqJQtgVt8yVbAtSg5N_aCvUnpAIDcKP2aXWRRilu1YofN0xR9Sl0YCxqbYr2nSPXsY_eD5tNhaIvtcfJx3vs4hDTTrvfF5ilMoT8-Up_ZJYaRki_uh5stN0Ubw1Dc70MTflmWVAwUu3FJV-xVS33yb5_1kj182Xxbb8vbu5uv68-3ZS3BzqU0qFtTGa1r6wVvFJEg9I0xslZmJ4i0AAmNlaoRLXqyJMkILUWtcGe4uGQfz7lTDN8Xn2Y3dKn2fU-jD0tyaEFYiVJUGf3wD3oISxzzdJmqKoMVap0pPFN1DClF37opdnmpo0NwpyLcuQiXi3CnIhxkz_vn5GU3-OaP4_fPZ4CfgZSvxkcf_3r6v6k_ASiwlAU</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Wagschal, Kurt C.</creator><creator>Rose Stoller, J.</creator><creator>Chan, Victor J.</creator><creator>Jordan, Douglas B.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20171201</creationdate><title>Expression and Characterization of Hyperthermostable Exopolygalacturonase RmGH28 from Rhodothermus marinus</title><author>Wagschal, Kurt C. ; Rose Stoller, J. ; Chan, Victor J. ; Jordan, Douglas B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-4817f86877c9e32d5aa3a1ed884c58b3aa73040d945d3f1ea9a4a83743c51b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino acid sequence</topic><topic>Amino acids</topic><topic>Bacteria</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Biochemistry</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Contamination</topic><topic>E coli</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Esterification</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Glycoside Hydrolases - biosynthesis</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Glycoside Hydrolases - genetics</topic><topic>Glycosyl hydrolase</topic><topic>High temperature</topic><topic>Homology</topic><topic>Hot Temperature</topic><topic>Molecular structure</topic><topic>Organisms</topic><topic>Pectin</topic><topic>Polygalacturonase</topic><topic>Polygalacturonic acid</topic><topic>Polymers</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Rhodothermus - enzymology</topic><topic>Rhodothermus - genetics</topic><topic>Rhodothermus marinus</topic><topic>Structure-function relationships</topic><topic>Substrate inhibition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagschal, Kurt C.</creatorcontrib><creatorcontrib>Rose Stoller, J.</creatorcontrib><creatorcontrib>Chan, Victor J.</creatorcontrib><creatorcontrib>Jordan, Douglas B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagschal, Kurt C.</au><au>Rose Stoller, J.</au><au>Chan, Victor J.</au><au>Jordan, Douglas B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression and Characterization of Hyperthermostable Exopolygalacturonase RmGH28 from Rhodothermus marinus</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><stitle>Appl Biochem Biotechnol</stitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>183</volume><issue>4</issue><spage>1503</spage><epage>1515</epage><pages>1503-1515</pages><issn>0273-2289</issn><eissn>1559-0291</eissn><abstract>The gene RmGH28 from the organism Rhodothermus marinus , a putative glycosyl hydrolase family 28 polygalacturonase, was expressed in Escherichia coli and biochemically characterized. The gene was found to encode an exopolygalacturonase termed RmGH28, with galacturonic acid monomer and the polymer substrate (n-1) as the products released when acting on de-esterified polygalacturonic acid from citrus pectin. The enzyme at 25 °C had k cat ∼6 s −1 when acting on polygalacturonic acid, with K m ∼0.7 μM and a substrate inhibition constant K si ∼70 μM. The enzyme was hyperthermophilic, with one half initial enzyme activity remaining after 1-h incubation at 93.9 °C. Since the enzyme can function at high temperatures where reaction rates are increased and the risk of bacterial contamination is decreased, this indicates that RmGH28 can be useful in industry for generating galacturonic acid from pectin. The amino acid sequence of RmGH28 is highly homologous to the known hyperthermophilic exopolygalacturonases TtGH28 and Tm0437, which together can serve as starting points for structure-function studies and molecular breeding enzyme engineering approaches.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>28555295</pmid><doi>10.1007/s12010-017-2518-0</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-2289
ispartof Applied biochemistry and biotechnology, 2017-12, Vol.183 (4), p.1503-1515
issn 0273-2289
1559-0291
language eng
recordid cdi_proquest_miscellaneous_1903941436
source Springer Nature
subjects Amino acid sequence
Amino acids
Bacteria
Bacterial Proteins - biosynthesis
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Biochemistry
Biotechnology
Chemistry
Chemistry and Materials Science
Contamination
E coli
Enzymatic activity
Enzyme activity
Enzyme Stability
Enzymes
Escherichia coli
Esterification
Gene Expression
Genes
Glycoside Hydrolases - biosynthesis
Glycoside Hydrolases - chemistry
Glycoside Hydrolases - genetics
Glycosyl hydrolase
High temperature
Homology
Hot Temperature
Molecular structure
Organisms
Pectin
Polygalacturonase
Polygalacturonic acid
Polymers
Recombinant Proteins - biosynthesis
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Rhodothermus - enzymology
Rhodothermus - genetics
Rhodothermus marinus
Structure-function relationships
Substrate inhibition
title Expression and Characterization of Hyperthermostable Exopolygalacturonase RmGH28 from Rhodothermus marinus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20and%20Characterization%20of%20Hyperthermostable%20Exopolygalacturonase%20RmGH28%20from%20Rhodothermus%20marinus&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=Wagschal,%20Kurt%20C.&rft.date=2017-12-01&rft.volume=183&rft.issue=4&rft.spage=1503&rft.epage=1515&rft.pages=1503-1515&rft.issn=0273-2289&rft.eissn=1559-0291&rft_id=info:doi/10.1007/s12010-017-2518-0&rft_dat=%3Cproquest_cross%3E1966816177%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-4817f86877c9e32d5aa3a1ed884c58b3aa73040d945d3f1ea9a4a83743c51b823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1966816177&rft_id=info:pmid/28555295&rfr_iscdi=true