Loading…

Technical Note: Angular dependence of a 2D monolithic silicon diode array for small field dosimetry

Purpose This study aims to investigate the 2D monolithic silicon diode array size of 52 × 52 mm2 (MP512) angular response. An angular correction method has been developed that improves the accuracy of dose measurement in a small field. Methods The MP512 was placed at the center of a cylindrical phan...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) 2017-08, Vol.44 (8), p.4313-4321
Main Authors: Stansook, Nauljun, Utitsarn, Kananan, Petasecca, Marco, Newall, Matthew K., Duncan, Mitchell, Nitschke, Kym, Carolan, Martin, Metcalfe, Peter, Lerch, Michael L.F., Perevertaylo, Vladimir L., Tomé, Wolfgang A., Rosenfeld, Anatoly B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose This study aims to investigate the 2D monolithic silicon diode array size of 52 × 52 mm2 (MP512) angular response. An angular correction method has been developed that improves the accuracy of dose measurement in a small field. Methods The MP512 was placed at the center of a cylindrical phantom, irradiated using 6 MV and 10 MV photons and incrementing the incidence of the beam angle in 15° steps from 0° to 180°, and then in 1° steps between 85° and 95°. The MP512 response was characterized for square field sizes varying between 1 × 1 cm2 and 10 × 10 cm2. The angular correction factor was obtained as the ratio of MP512 response to EBT3 film measured doses as a function of the incidence angle (Ɵ) and was normalized at 0° incidence angle. Beam profiles of the corrected MP512 responses were compared with the EBT3 responses to verify the effectiveness of the method adopted. Results The intrinsic angular dependence of the MP512 shows maximum relative deviation from the response normalized to 0° of 18.5 ± 0.5% and 15.5 ± 0.5% for 6 MV and 10 MV, respectively, demonstrating that the angular response is sensitive to the energy. In contrast, the variation of angular response is less affected by field size. Comparison of cross‐plane profiles measured by the corrected MP512 and EBT3 shows an agreement within ±2% for all field sizes when the beams irradiated the array at 0°, 45°, 135°, and 180° angles of incidence from the normal to the detector plane. At 90° incidence, corresponding to a depth dose measurement, up to a 6% discrepancy was observed for a 1 × 1 cm2 field of 6 MV. Conclusion An angular correction factor can be adopted for small field sizes. Measurements discrepancies could be encountered when irradiating with very small fields parallel to the detector plane. Using this approach, the MP512 is shown to be a suitable detector for 2D dose mapping of small field size photon beams.
ISSN:0094-2405
2473-4209
DOI:10.1002/mp.12377