Loading…

RELATIONSHIP BETWEEN CHROMOSPHERIC EVAPORATION AND MAGNETIC FIELD TOPOLOGY IN AN M-CLASS SOLAR FLARE

ABSTRACT Chromospheric evaporation is observed as Doppler blueshift during solar flares. It plays a key role in the dynamics and energetics of solar flares; however, its mechanism is still unknown. In this paper, we present a detailed analysis of spatially resolved multi-wavelength observations of c...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2016-09, Vol.828 (1), p.4-4
Main Authors: Sadykov, Viacheslav M, Kosovichev, Alexander G, Sharykin, Ivan N, Zimovets, Ivan V, Dominguez, Santiago Vargas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c514t-f51408f2020e7ad741c8b7a8c324c4bb3e3019f9aadf1ee90e6040d85b2fd4973
cites cdi_FETCH-LOGICAL-c514t-f51408f2020e7ad741c8b7a8c324c4bb3e3019f9aadf1ee90e6040d85b2fd4973
container_end_page 4
container_issue 1
container_start_page 4
container_title The Astrophysical journal
container_volume 828
creator Sadykov, Viacheslav M
Kosovichev, Alexander G
Sharykin, Ivan N
Zimovets, Ivan V
Dominguez, Santiago Vargas
description ABSTRACT Chromospheric evaporation is observed as Doppler blueshift during solar flares. It plays a key role in the dynamics and energetics of solar flares; however, its mechanism is still unknown. In this paper, we present a detailed analysis of spatially resolved multi-wavelength observations of chromospheric evaporation during an M 1.0-class solar flare (SOL2014-06-12T21:12) using data from NASA's Interface Region Imaging Spectrograph and HMI/SDO (the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory), and high-resolution observations from VIS/NST (the Visible Imaging Spectrometer at the New Solar Telescope). The results show that the averaged over the flare region Fe xxi blueshift of the hot (107 K) evaporating plasma is delayed relative to the C ii redshift of the relatively cold (104 K) chromospheric plasma by about one minute. The spatial distribution of the delays is not uniform across the region and can be as long as two minutes in several zones. Using vector magnetograms from HMI, we reconstruct the magnetic field topology and the quasi-separatrix layer, and find that the blueshift delay regions as well as the H flare ribbons are connected to the region of the magnetic polarity inversion line (PIL) and an expanding flux rope via a system of low-lying loop arcades with a height of 4.5 Mm. As a result, the chromospheric evaporation may be driven by the energy release in the vicinity of PIL, and has the observed properties due to a local magnetic field topology.
doi_str_mv 10.3847/0004-637X/828/1/4
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904198113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901743351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-f51408f2020e7ad741c8b7a8c324c4bb3e3019f9aadf1ee90e6040d85b2fd4973</originalsourceid><addsrcrecordid>eNqNkc1uozAUha1qKk0m7QPMzlI3s2GwscFmyVAnQSIhAvozK4sYoyFKA8VkMW8_ZtJ2VVXd3Kur8527OAeA7xj9JJwyFyFEnYCwR5d73MUuvQAz7BPuUOKzL2D2pn8F34zZT6cXhjNQ5yKNyiTbFKtkC3-J8kGIDYxXebbOiu1K5EkMxX20zfL_FIw2t3AdLTeitMIiEektLLNtlmbL3zCZZLh24jQqClhkaZTDhR3iClw21cHo65c9B3cLUcYrx9qSOEod5WM6Oo2diDce8pBmVc0oVnzHKq6IRxXd7YgmCIdNWFV1g7UOkQ4QRTX3d15T05CRObg5_-3M2Eqj2lGrP6o7HrUapecFAaM8sNSPM9UP3fNJm1E-tUbpw6E66u5kJA4RxSHHmHwGxYwS4mOL4jOqhs6YQTeyH9qnavgrMZJTRXLKXE4VSFuRxJJaj3P2tF0v991pONp0PuRv3uGrfv9KyL5uyD8ZsZQE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901743351</pqid></control><display><type>article</type><title>RELATIONSHIP BETWEEN CHROMOSPHERIC EVAPORATION AND MAGNETIC FIELD TOPOLOGY IN AN M-CLASS SOLAR FLARE</title><source>EZB Electronic Journals Library</source><creator>Sadykov, Viacheslav M ; Kosovichev, Alexander G ; Sharykin, Ivan N ; Zimovets, Ivan V ; Dominguez, Santiago Vargas</creator><creatorcontrib>Sadykov, Viacheslav M ; Kosovichev, Alexander G ; Sharykin, Ivan N ; Zimovets, Ivan V ; Dominguez, Santiago Vargas</creatorcontrib><description>ABSTRACT Chromospheric evaporation is observed as Doppler blueshift during solar flares. It plays a key role in the dynamics and energetics of solar flares; however, its mechanism is still unknown. In this paper, we present a detailed analysis of spatially resolved multi-wavelength observations of chromospheric evaporation during an M 1.0-class solar flare (SOL2014-06-12T21:12) using data from NASA's Interface Region Imaging Spectrograph and HMI/SDO (the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory), and high-resolution observations from VIS/NST (the Visible Imaging Spectrometer at the New Solar Telescope). The results show that the averaged over the flare region Fe xxi blueshift of the hot (107 K) evaporating plasma is delayed relative to the C ii redshift of the relatively cold (104 K) chromospheric plasma by about one minute. The spatial distribution of the delays is not uniform across the region and can be as long as two minutes in several zones. Using vector magnetograms from HMI, we reconstruct the magnetic field topology and the quasi-separatrix layer, and find that the blueshift delay regions as well as the H flare ribbons are connected to the region of the magnetic polarity inversion line (PIL) and an expanding flux rope via a system of low-lying loop arcades with a height of 4.5 Mm. As a result, the chromospheric evaporation may be driven by the energy release in the vicinity of PIL, and has the observed properties due to a local magnetic field topology.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/0004-637X/828/1/4</identifier><language>eng</language><publisher>United States: The American Astronomical Society</publisher><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; CHROMOSPHERE ; Delay ; EVAPORATION ; Flares ; INTERFACES ; LAYERS ; MAGNETIC FIELDS ; Magnetic properties ; PLASMA ; RED SHIFT ; RESOLUTION ; Ribbons ; SOLAR FLARES ; SPATIAL DISTRIBUTION ; SPECTROMETERS ; SUN ; Sun: activity ; Sun: chromosphere ; Sun: flares ; Sun: magnetic fields ; Sun: UV radiation ; techniques: spectroscopic ; TELESCOPES ; Topology ; ULTRAVIOLET RADIATION ; WAVELENGTHS</subject><ispartof>The Astrophysical journal, 2016-09, Vol.828 (1), p.4-4</ispartof><rights>2016. The American Astronomical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-f51408f2020e7ad741c8b7a8c324c4bb3e3019f9aadf1ee90e6040d85b2fd4973</citedby><cites>FETCH-LOGICAL-c514t-f51408f2020e7ad741c8b7a8c324c4bb3e3019f9aadf1ee90e6040d85b2fd4973</cites><orcidid>0000-0002-4001-1295 ; 0000-0002-5999-4842 ; 0000-0002-5719-2352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22667486$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadykov, Viacheslav M</creatorcontrib><creatorcontrib>Kosovichev, Alexander G</creatorcontrib><creatorcontrib>Sharykin, Ivan N</creatorcontrib><creatorcontrib>Zimovets, Ivan V</creatorcontrib><creatorcontrib>Dominguez, Santiago Vargas</creatorcontrib><title>RELATIONSHIP BETWEEN CHROMOSPHERIC EVAPORATION AND MAGNETIC FIELD TOPOLOGY IN AN M-CLASS SOLAR FLARE</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>ABSTRACT Chromospheric evaporation is observed as Doppler blueshift during solar flares. It plays a key role in the dynamics and energetics of solar flares; however, its mechanism is still unknown. In this paper, we present a detailed analysis of spatially resolved multi-wavelength observations of chromospheric evaporation during an M 1.0-class solar flare (SOL2014-06-12T21:12) using data from NASA's Interface Region Imaging Spectrograph and HMI/SDO (the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory), and high-resolution observations from VIS/NST (the Visible Imaging Spectrometer at the New Solar Telescope). The results show that the averaged over the flare region Fe xxi blueshift of the hot (107 K) evaporating plasma is delayed relative to the C ii redshift of the relatively cold (104 K) chromospheric plasma by about one minute. The spatial distribution of the delays is not uniform across the region and can be as long as two minutes in several zones. Using vector magnetograms from HMI, we reconstruct the magnetic field topology and the quasi-separatrix layer, and find that the blueshift delay regions as well as the H flare ribbons are connected to the region of the magnetic polarity inversion line (PIL) and an expanding flux rope via a system of low-lying loop arcades with a height of 4.5 Mm. As a result, the chromospheric evaporation may be driven by the energy release in the vicinity of PIL, and has the observed properties due to a local magnetic field topology.</description><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>CHROMOSPHERE</subject><subject>Delay</subject><subject>EVAPORATION</subject><subject>Flares</subject><subject>INTERFACES</subject><subject>LAYERS</subject><subject>MAGNETIC FIELDS</subject><subject>Magnetic properties</subject><subject>PLASMA</subject><subject>RED SHIFT</subject><subject>RESOLUTION</subject><subject>Ribbons</subject><subject>SOLAR FLARES</subject><subject>SPATIAL DISTRIBUTION</subject><subject>SPECTROMETERS</subject><subject>SUN</subject><subject>Sun: activity</subject><subject>Sun: chromosphere</subject><subject>Sun: flares</subject><subject>Sun: magnetic fields</subject><subject>Sun: UV radiation</subject><subject>techniques: spectroscopic</subject><subject>TELESCOPES</subject><subject>Topology</subject><subject>ULTRAVIOLET RADIATION</subject><subject>WAVELENGTHS</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1uozAUha1qKk0m7QPMzlI3s2GwscFmyVAnQSIhAvozK4sYoyFKA8VkMW8_ZtJ2VVXd3Kur8527OAeA7xj9JJwyFyFEnYCwR5d73MUuvQAz7BPuUOKzL2D2pn8F34zZT6cXhjNQ5yKNyiTbFKtkC3-J8kGIDYxXebbOiu1K5EkMxX20zfL_FIw2t3AdLTeitMIiEektLLNtlmbL3zCZZLh24jQqClhkaZTDhR3iClw21cHo65c9B3cLUcYrx9qSOEod5WM6Oo2diDce8pBmVc0oVnzHKq6IRxXd7YgmCIdNWFV1g7UOkQ4QRTX3d15T05CRObg5_-3M2Eqj2lGrP6o7HrUapecFAaM8sNSPM9UP3fNJm1E-tUbpw6E66u5kJA4RxSHHmHwGxYwS4mOL4jOqhs6YQTeyH9qnavgrMZJTRXLKXE4VSFuRxJJaj3P2tF0v991pONp0PuRv3uGrfv9KyL5uyD8ZsZQE</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Sadykov, Viacheslav M</creator><creator>Kosovichev, Alexander G</creator><creator>Sharykin, Ivan N</creator><creator>Zimovets, Ivan V</creator><creator>Dominguez, Santiago Vargas</creator><general>The American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4001-1295</orcidid><orcidid>https://orcid.org/0000-0002-5999-4842</orcidid><orcidid>https://orcid.org/0000-0002-5719-2352</orcidid></search><sort><creationdate>20160901</creationdate><title>RELATIONSHIP BETWEEN CHROMOSPHERIC EVAPORATION AND MAGNETIC FIELD TOPOLOGY IN AN M-CLASS SOLAR FLARE</title><author>Sadykov, Viacheslav M ; Kosovichev, Alexander G ; Sharykin, Ivan N ; Zimovets, Ivan V ; Dominguez, Santiago Vargas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-f51408f2020e7ad741c8b7a8c324c4bb3e3019f9aadf1ee90e6040d85b2fd4973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>CHROMOSPHERE</topic><topic>Delay</topic><topic>EVAPORATION</topic><topic>Flares</topic><topic>INTERFACES</topic><topic>LAYERS</topic><topic>MAGNETIC FIELDS</topic><topic>Magnetic properties</topic><topic>PLASMA</topic><topic>RED SHIFT</topic><topic>RESOLUTION</topic><topic>Ribbons</topic><topic>SOLAR FLARES</topic><topic>SPATIAL DISTRIBUTION</topic><topic>SPECTROMETERS</topic><topic>SUN</topic><topic>Sun: activity</topic><topic>Sun: chromosphere</topic><topic>Sun: flares</topic><topic>Sun: magnetic fields</topic><topic>Sun: UV radiation</topic><topic>techniques: spectroscopic</topic><topic>TELESCOPES</topic><topic>Topology</topic><topic>ULTRAVIOLET RADIATION</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadykov, Viacheslav M</creatorcontrib><creatorcontrib>Kosovichev, Alexander G</creatorcontrib><creatorcontrib>Sharykin, Ivan N</creatorcontrib><creatorcontrib>Zimovets, Ivan V</creatorcontrib><creatorcontrib>Dominguez, Santiago Vargas</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadykov, Viacheslav M</au><au>Kosovichev, Alexander G</au><au>Sharykin, Ivan N</au><au>Zimovets, Ivan V</au><au>Dominguez, Santiago Vargas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RELATIONSHIP BETWEEN CHROMOSPHERIC EVAPORATION AND MAGNETIC FIELD TOPOLOGY IN AN M-CLASS SOLAR FLARE</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>828</volume><issue>1</issue><spage>4</spage><epage>4</epage><pages>4-4</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>ABSTRACT Chromospheric evaporation is observed as Doppler blueshift during solar flares. It plays a key role in the dynamics and energetics of solar flares; however, its mechanism is still unknown. In this paper, we present a detailed analysis of spatially resolved multi-wavelength observations of chromospheric evaporation during an M 1.0-class solar flare (SOL2014-06-12T21:12) using data from NASA's Interface Region Imaging Spectrograph and HMI/SDO (the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory), and high-resolution observations from VIS/NST (the Visible Imaging Spectrometer at the New Solar Telescope). The results show that the averaged over the flare region Fe xxi blueshift of the hot (107 K) evaporating plasma is delayed relative to the C ii redshift of the relatively cold (104 K) chromospheric plasma by about one minute. The spatial distribution of the delays is not uniform across the region and can be as long as two minutes in several zones. Using vector magnetograms from HMI, we reconstruct the magnetic field topology and the quasi-separatrix layer, and find that the blueshift delay regions as well as the H flare ribbons are connected to the region of the magnetic polarity inversion line (PIL) and an expanding flux rope via a system of low-lying loop arcades with a height of 4.5 Mm. As a result, the chromospheric evaporation may be driven by the energy release in the vicinity of PIL, and has the observed properties due to a local magnetic field topology.</abstract><cop>United States</cop><pub>The American Astronomical Society</pub><doi>10.3847/0004-637X/828/1/4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4001-1295</orcidid><orcidid>https://orcid.org/0000-0002-5999-4842</orcidid><orcidid>https://orcid.org/0000-0002-5719-2352</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2016-09, Vol.828 (1), p.4-4
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_miscellaneous_1904198113
source EZB Electronic Journals Library
subjects ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
CHROMOSPHERE
Delay
EVAPORATION
Flares
INTERFACES
LAYERS
MAGNETIC FIELDS
Magnetic properties
PLASMA
RED SHIFT
RESOLUTION
Ribbons
SOLAR FLARES
SPATIAL DISTRIBUTION
SPECTROMETERS
SUN
Sun: activity
Sun: chromosphere
Sun: flares
Sun: magnetic fields
Sun: UV radiation
techniques: spectroscopic
TELESCOPES
Topology
ULTRAVIOLET RADIATION
WAVELENGTHS
title RELATIONSHIP BETWEEN CHROMOSPHERIC EVAPORATION AND MAGNETIC FIELD TOPOLOGY IN AN M-CLASS SOLAR FLARE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RELATIONSHIP%20BETWEEN%20CHROMOSPHERIC%20EVAPORATION%20AND%20MAGNETIC%20FIELD%20TOPOLOGY%20IN%20AN%20M-CLASS%20SOLAR%20FLARE&rft.jtitle=The%20Astrophysical%20journal&rft.au=Sadykov,%20Viacheslav%20M&rft.date=2016-09-01&rft.volume=828&rft.issue=1&rft.spage=4&rft.epage=4&rft.pages=4-4&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/0004-637X/828/1/4&rft_dat=%3Cproquest_iop_j%3E1901743351%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c514t-f51408f2020e7ad741c8b7a8c324c4bb3e3019f9aadf1ee90e6040d85b2fd4973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1901743351&rft_id=info:pmid/&rfr_iscdi=true