Loading…

Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing

Heart-on-a-chip devices with integrated strain gauges for direct readout of tissue contractile strength allow for multiplexed drug-dose experiments and studies of functional maturation of cardiac tissue. Biomedical research has relied on animal studies and conventional cell cultures for decades. Rec...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2017-03, Vol.16 (3), p.303-308
Main Authors: Lind, Johan U., Busbee, Travis A., Valentine, Alexander D., Pasqualini, Francesco S., Yuan, Hongyan, Yadid, Moran, Park, Sung-Jin, Kotikian, Arda, Nesmith, Alexander P., Campbell, Patrick H., Vlassak, Joost J., Lewis, Jennifer A., Parker, Kevin K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-8138f36a9e18f95a2b527d61c3bf42faaf15f4205c6363c788a656a3d1832023
cites cdi_FETCH-LOGICAL-c475t-8138f36a9e18f95a2b527d61c3bf42faaf15f4205c6363c788a656a3d1832023
container_end_page 308
container_issue 3
container_start_page 303
container_title Nature materials
container_volume 16
creator Lind, Johan U.
Busbee, Travis A.
Valentine, Alexander D.
Pasqualini, Francesco S.
Yuan, Hongyan
Yadid, Moran
Park, Sung-Jin
Kotikian, Arda
Nesmith, Alexander P.
Campbell, Patrick H.
Vlassak, Joost J.
Lewis, Jennifer A.
Parker, Kevin K.
description Heart-on-a-chip devices with integrated strain gauges for direct readout of tissue contractile strength allow for multiplexed drug-dose experiments and studies of functional maturation of cardiac tissue. Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro , have emerged as a promising alternative 1 . However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes 2 . Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.
doi_str_mv 10.1038/nmat4782
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904200184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904200184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-8138f36a9e18f95a2b527d61c3bf42faaf15f4205c6363c788a656a3d1832023</originalsourceid><addsrcrecordid>eNqFkctKAzEUhoMoVqvgE8iAG12M5n5ZSvFSKLjpUhjSTKZNmUtNMoW-vSltVbpxlUPy5Tuc8wNwg-AjgkQ-tY2OVEh8Ai4QFTynnMPTfY0QxgNwGcISQowY4-dggIUQTEB5AT7HbYi-b2wbbZkZ7UunTdY447vVYhNcV3dzZ3SdlXbtjA3Z2ums6evoUkvrXXqJC29tXrrkSHybblbetdG18ytwVuk62Ov9OQTT15fp6D2ffLyNR8-T3FDBYi4RkRXhWlkkK8U0njEsSo4MmVUUV1pXiKUCMsMJJ0ZIqTnjmpRIEgwxGYL7nXblu6_ehlg0Lhhb17q1XR8KpGD6DZGk_6OSUKWEUjKhd0fosut9Gm9LKSQZZZD8CtPCQvC2KtLwjfabAsFim01xyCaht3thP2ts-QMewkjAww4I2wXOrf_T8Vj2DdMPmDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891854503</pqid></control><display><type>article</type><title>Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing</title><source>Nature</source><creator>Lind, Johan U. ; Busbee, Travis A. ; Valentine, Alexander D. ; Pasqualini, Francesco S. ; Yuan, Hongyan ; Yadid, Moran ; Park, Sung-Jin ; Kotikian, Arda ; Nesmith, Alexander P. ; Campbell, Patrick H. ; Vlassak, Joost J. ; Lewis, Jennifer A. ; Parker, Kevin K.</creator><creatorcontrib>Lind, Johan U. ; Busbee, Travis A. ; Valentine, Alexander D. ; Pasqualini, Francesco S. ; Yuan, Hongyan ; Yadid, Moran ; Park, Sung-Jin ; Kotikian, Arda ; Nesmith, Alexander P. ; Campbell, Patrick H. ; Vlassak, Joost J. ; Lewis, Jennifer A. ; Parker, Kevin K.</creatorcontrib><description>Heart-on-a-chip devices with integrated strain gauges for direct readout of tissue contractile strength allow for multiplexed drug-dose experiments and studies of functional maturation of cardiac tissue. Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro , have emerged as a promising alternative 1 . However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes 2 . Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4782</identifier><identifier>PMID: 27775708</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>3-D printers ; 631/1647/277 ; 631/61/2035 ; 639/166/985 ; 639/301/1005/1009 ; 639/301/54/994 ; Biomaterials ; Biomedical engineering ; Condensed Matter Physics ; Devices ; Drugs ; Electronics ; Fabrication ; Heart ; Human behavior ; Laminar ; letter ; Materials Science ; Medical equipment ; Myocardium - cytology ; Nanotechnology ; Optical and Electronic Materials ; Printing, Three-Dimensional - instrumentation ; Self assembly ; Sensors ; Stem cells ; Three dimensional printing ; Tissue Array Analysis - instrumentation ; Tissue engineering ; Tissues</subject><ispartof>Nature materials, 2017-03, Vol.16 (3), p.303-308</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Mar 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-8138f36a9e18f95a2b527d61c3bf42faaf15f4205c6363c788a656a3d1832023</citedby><cites>FETCH-LOGICAL-c475t-8138f36a9e18f95a2b527d61c3bf42faaf15f4205c6363c788a656a3d1832023</cites><orcidid>0000-0001-8225-0211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27775708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lind, Johan U.</creatorcontrib><creatorcontrib>Busbee, Travis A.</creatorcontrib><creatorcontrib>Valentine, Alexander D.</creatorcontrib><creatorcontrib>Pasqualini, Francesco S.</creatorcontrib><creatorcontrib>Yuan, Hongyan</creatorcontrib><creatorcontrib>Yadid, Moran</creatorcontrib><creatorcontrib>Park, Sung-Jin</creatorcontrib><creatorcontrib>Kotikian, Arda</creatorcontrib><creatorcontrib>Nesmith, Alexander P.</creatorcontrib><creatorcontrib>Campbell, Patrick H.</creatorcontrib><creatorcontrib>Vlassak, Joost J.</creatorcontrib><creatorcontrib>Lewis, Jennifer A.</creatorcontrib><creatorcontrib>Parker, Kevin K.</creatorcontrib><title>Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Heart-on-a-chip devices with integrated strain gauges for direct readout of tissue contractile strength allow for multiplexed drug-dose experiments and studies of functional maturation of cardiac tissue. Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro , have emerged as a promising alternative 1 . However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes 2 . Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.</description><subject>3-D printers</subject><subject>631/1647/277</subject><subject>631/61/2035</subject><subject>639/166/985</subject><subject>639/301/1005/1009</subject><subject>639/301/54/994</subject><subject>Biomaterials</subject><subject>Biomedical engineering</subject><subject>Condensed Matter Physics</subject><subject>Devices</subject><subject>Drugs</subject><subject>Electronics</subject><subject>Fabrication</subject><subject>Heart</subject><subject>Human behavior</subject><subject>Laminar</subject><subject>letter</subject><subject>Materials Science</subject><subject>Medical equipment</subject><subject>Myocardium - cytology</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Printing, Three-Dimensional - instrumentation</subject><subject>Self assembly</subject><subject>Sensors</subject><subject>Stem cells</subject><subject>Three dimensional printing</subject><subject>Tissue Array Analysis - instrumentation</subject><subject>Tissue engineering</subject><subject>Tissues</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkctKAzEUhoMoVqvgE8iAG12M5n5ZSvFSKLjpUhjSTKZNmUtNMoW-vSltVbpxlUPy5Tuc8wNwg-AjgkQ-tY2OVEh8Ai4QFTynnMPTfY0QxgNwGcISQowY4-dggIUQTEB5AT7HbYi-b2wbbZkZ7UunTdY447vVYhNcV3dzZ3SdlXbtjA3Z2ums6evoUkvrXXqJC29tXrrkSHybblbetdG18ytwVuk62Ov9OQTT15fp6D2ffLyNR8-T3FDBYi4RkRXhWlkkK8U0njEsSo4MmVUUV1pXiKUCMsMJJ0ZIqTnjmpRIEgwxGYL7nXblu6_ehlg0Lhhb17q1XR8KpGD6DZGk_6OSUKWEUjKhd0fosut9Gm9LKSQZZZD8CtPCQvC2KtLwjfabAsFim01xyCaht3thP2ts-QMewkjAww4I2wXOrf_T8Vj2DdMPmDU</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Lind, Johan U.</creator><creator>Busbee, Travis A.</creator><creator>Valentine, Alexander D.</creator><creator>Pasqualini, Francesco S.</creator><creator>Yuan, Hongyan</creator><creator>Yadid, Moran</creator><creator>Park, Sung-Jin</creator><creator>Kotikian, Arda</creator><creator>Nesmith, Alexander P.</creator><creator>Campbell, Patrick H.</creator><creator>Vlassak, Joost J.</creator><creator>Lewis, Jennifer A.</creator><creator>Parker, Kevin K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8225-0211</orcidid></search><sort><creationdate>20170301</creationdate><title>Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing</title><author>Lind, Johan U. ; Busbee, Travis A. ; Valentine, Alexander D. ; Pasqualini, Francesco S. ; Yuan, Hongyan ; Yadid, Moran ; Park, Sung-Jin ; Kotikian, Arda ; Nesmith, Alexander P. ; Campbell, Patrick H. ; Vlassak, Joost J. ; Lewis, Jennifer A. ; Parker, Kevin K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-8138f36a9e18f95a2b527d61c3bf42faaf15f4205c6363c788a656a3d1832023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3-D printers</topic><topic>631/1647/277</topic><topic>631/61/2035</topic><topic>639/166/985</topic><topic>639/301/1005/1009</topic><topic>639/301/54/994</topic><topic>Biomaterials</topic><topic>Biomedical engineering</topic><topic>Condensed Matter Physics</topic><topic>Devices</topic><topic>Drugs</topic><topic>Electronics</topic><topic>Fabrication</topic><topic>Heart</topic><topic>Human behavior</topic><topic>Laminar</topic><topic>letter</topic><topic>Materials Science</topic><topic>Medical equipment</topic><topic>Myocardium - cytology</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Printing, Three-Dimensional - instrumentation</topic><topic>Self assembly</topic><topic>Sensors</topic><topic>Stem cells</topic><topic>Three dimensional printing</topic><topic>Tissue Array Analysis - instrumentation</topic><topic>Tissue engineering</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lind, Johan U.</creatorcontrib><creatorcontrib>Busbee, Travis A.</creatorcontrib><creatorcontrib>Valentine, Alexander D.</creatorcontrib><creatorcontrib>Pasqualini, Francesco S.</creatorcontrib><creatorcontrib>Yuan, Hongyan</creatorcontrib><creatorcontrib>Yadid, Moran</creatorcontrib><creatorcontrib>Park, Sung-Jin</creatorcontrib><creatorcontrib>Kotikian, Arda</creatorcontrib><creatorcontrib>Nesmith, Alexander P.</creatorcontrib><creatorcontrib>Campbell, Patrick H.</creatorcontrib><creatorcontrib>Vlassak, Joost J.</creatorcontrib><creatorcontrib>Lewis, Jennifer A.</creatorcontrib><creatorcontrib>Parker, Kevin K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lind, Johan U.</au><au>Busbee, Travis A.</au><au>Valentine, Alexander D.</au><au>Pasqualini, Francesco S.</au><au>Yuan, Hongyan</au><au>Yadid, Moran</au><au>Park, Sung-Jin</au><au>Kotikian, Arda</au><au>Nesmith, Alexander P.</au><au>Campbell, Patrick H.</au><au>Vlassak, Joost J.</au><au>Lewis, Jennifer A.</au><au>Parker, Kevin K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>16</volume><issue>3</issue><spage>303</spage><epage>308</epage><pages>303-308</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Heart-on-a-chip devices with integrated strain gauges for direct readout of tissue contractile strength allow for multiplexed drug-dose experiments and studies of functional maturation of cardiac tissue. Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro , have emerged as a promising alternative 1 . However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes 2 . Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27775708</pmid><doi>10.1038/nmat4782</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8225-0211</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2017-03, Vol.16 (3), p.303-308
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1904200184
source Nature
subjects 3-D printers
631/1647/277
631/61/2035
639/166/985
639/301/1005/1009
639/301/54/994
Biomaterials
Biomedical engineering
Condensed Matter Physics
Devices
Drugs
Electronics
Fabrication
Heart
Human behavior
Laminar
letter
Materials Science
Medical equipment
Myocardium - cytology
Nanotechnology
Optical and Electronic Materials
Printing, Three-Dimensional - instrumentation
Self assembly
Sensors
Stem cells
Three dimensional printing
Tissue Array Analysis - instrumentation
Tissue engineering
Tissues
title Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instrumented%20cardiac%20microphysiological%20devices%20via%20multimaterial%20three-dimensional%20printing&rft.jtitle=Nature%20materials&rft.au=Lind,%20Johan%20U.&rft.date=2017-03-01&rft.volume=16&rft.issue=3&rft.spage=303&rft.epage=308&rft.pages=303-308&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4782&rft_dat=%3Cproquest_cross%3E1904200184%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-8138f36a9e18f95a2b527d61c3bf42faaf15f4205c6363c788a656a3d1832023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1891854503&rft_id=info:pmid/27775708&rfr_iscdi=true