Loading…
Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing
Heart-on-a-chip devices with integrated strain gauges for direct readout of tissue contractile strength allow for multiplexed drug-dose experiments and studies of functional maturation of cardiac tissue. Biomedical research has relied on animal studies and conventional cell cultures for decades. Rec...
Saved in:
Published in: | Nature materials 2017-03, Vol.16 (3), p.303-308 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-8138f36a9e18f95a2b527d61c3bf42faaf15f4205c6363c788a656a3d1832023 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-8138f36a9e18f95a2b527d61c3bf42faaf15f4205c6363c788a656a3d1832023 |
container_end_page | 308 |
container_issue | 3 |
container_start_page | 303 |
container_title | Nature materials |
container_volume | 16 |
creator | Lind, Johan U. Busbee, Travis A. Valentine, Alexander D. Pasqualini, Francesco S. Yuan, Hongyan Yadid, Moran Park, Sung-Jin Kotikian, Arda Nesmith, Alexander P. Campbell, Patrick H. Vlassak, Joost J. Lewis, Jennifer A. Parker, Kevin K. |
description | Heart-on-a-chip devices with integrated strain gauges for direct readout of tissue contractile strength allow for multiplexed drug-dose experiments and studies of functional maturation of cardiac tissue.
Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues
in vitro
, have emerged as a promising alternative
1
. However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes
2
. Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks. |
doi_str_mv | 10.1038/nmat4782 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904200184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904200184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-8138f36a9e18f95a2b527d61c3bf42faaf15f4205c6363c788a656a3d1832023</originalsourceid><addsrcrecordid>eNqFkctKAzEUhoMoVqvgE8iAG12M5n5ZSvFSKLjpUhjSTKZNmUtNMoW-vSltVbpxlUPy5Tuc8wNwg-AjgkQ-tY2OVEh8Ai4QFTynnMPTfY0QxgNwGcISQowY4-dggIUQTEB5AT7HbYi-b2wbbZkZ7UunTdY447vVYhNcV3dzZ3SdlXbtjA3Z2ums6evoUkvrXXqJC29tXrrkSHybblbetdG18ytwVuk62Ov9OQTT15fp6D2ffLyNR8-T3FDBYi4RkRXhWlkkK8U0njEsSo4MmVUUV1pXiKUCMsMJJ0ZIqTnjmpRIEgwxGYL7nXblu6_ehlg0Lhhb17q1XR8KpGD6DZGk_6OSUKWEUjKhd0fosut9Gm9LKSQZZZD8CtPCQvC2KtLwjfabAsFim01xyCaht3thP2ts-QMewkjAww4I2wXOrf_T8Vj2DdMPmDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891854503</pqid></control><display><type>article</type><title>Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing</title><source>Nature</source><creator>Lind, Johan U. ; Busbee, Travis A. ; Valentine, Alexander D. ; Pasqualini, Francesco S. ; Yuan, Hongyan ; Yadid, Moran ; Park, Sung-Jin ; Kotikian, Arda ; Nesmith, Alexander P. ; Campbell, Patrick H. ; Vlassak, Joost J. ; Lewis, Jennifer A. ; Parker, Kevin K.</creator><creatorcontrib>Lind, Johan U. ; Busbee, Travis A. ; Valentine, Alexander D. ; Pasqualini, Francesco S. ; Yuan, Hongyan ; Yadid, Moran ; Park, Sung-Jin ; Kotikian, Arda ; Nesmith, Alexander P. ; Campbell, Patrick H. ; Vlassak, Joost J. ; Lewis, Jennifer A. ; Parker, Kevin K.</creatorcontrib><description>Heart-on-a-chip devices with integrated strain gauges for direct readout of tissue contractile strength allow for multiplexed drug-dose experiments and studies of functional maturation of cardiac tissue.
Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues
in vitro
, have emerged as a promising alternative
1
. However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes
2
. Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4782</identifier><identifier>PMID: 27775708</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>3-D printers ; 631/1647/277 ; 631/61/2035 ; 639/166/985 ; 639/301/1005/1009 ; 639/301/54/994 ; Biomaterials ; Biomedical engineering ; Condensed Matter Physics ; Devices ; Drugs ; Electronics ; Fabrication ; Heart ; Human behavior ; Laminar ; letter ; Materials Science ; Medical equipment ; Myocardium - cytology ; Nanotechnology ; Optical and Electronic Materials ; Printing, Three-Dimensional - instrumentation ; Self assembly ; Sensors ; Stem cells ; Three dimensional printing ; Tissue Array Analysis - instrumentation ; Tissue engineering ; Tissues</subject><ispartof>Nature materials, 2017-03, Vol.16 (3), p.303-308</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Mar 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-8138f36a9e18f95a2b527d61c3bf42faaf15f4205c6363c788a656a3d1832023</citedby><cites>FETCH-LOGICAL-c475t-8138f36a9e18f95a2b527d61c3bf42faaf15f4205c6363c788a656a3d1832023</cites><orcidid>0000-0001-8225-0211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27775708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lind, Johan U.</creatorcontrib><creatorcontrib>Busbee, Travis A.</creatorcontrib><creatorcontrib>Valentine, Alexander D.</creatorcontrib><creatorcontrib>Pasqualini, Francesco S.</creatorcontrib><creatorcontrib>Yuan, Hongyan</creatorcontrib><creatorcontrib>Yadid, Moran</creatorcontrib><creatorcontrib>Park, Sung-Jin</creatorcontrib><creatorcontrib>Kotikian, Arda</creatorcontrib><creatorcontrib>Nesmith, Alexander P.</creatorcontrib><creatorcontrib>Campbell, Patrick H.</creatorcontrib><creatorcontrib>Vlassak, Joost J.</creatorcontrib><creatorcontrib>Lewis, Jennifer A.</creatorcontrib><creatorcontrib>Parker, Kevin K.</creatorcontrib><title>Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Heart-on-a-chip devices with integrated strain gauges for direct readout of tissue contractile strength allow for multiplexed drug-dose experiments and studies of functional maturation of cardiac tissue.
Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues
in vitro
, have emerged as a promising alternative
1
. However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes
2
. Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.</description><subject>3-D printers</subject><subject>631/1647/277</subject><subject>631/61/2035</subject><subject>639/166/985</subject><subject>639/301/1005/1009</subject><subject>639/301/54/994</subject><subject>Biomaterials</subject><subject>Biomedical engineering</subject><subject>Condensed Matter Physics</subject><subject>Devices</subject><subject>Drugs</subject><subject>Electronics</subject><subject>Fabrication</subject><subject>Heart</subject><subject>Human behavior</subject><subject>Laminar</subject><subject>letter</subject><subject>Materials Science</subject><subject>Medical equipment</subject><subject>Myocardium - cytology</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Printing, Three-Dimensional - instrumentation</subject><subject>Self assembly</subject><subject>Sensors</subject><subject>Stem cells</subject><subject>Three dimensional printing</subject><subject>Tissue Array Analysis - instrumentation</subject><subject>Tissue engineering</subject><subject>Tissues</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkctKAzEUhoMoVqvgE8iAG12M5n5ZSvFSKLjpUhjSTKZNmUtNMoW-vSltVbpxlUPy5Tuc8wNwg-AjgkQ-tY2OVEh8Ai4QFTynnMPTfY0QxgNwGcISQowY4-dggIUQTEB5AT7HbYi-b2wbbZkZ7UunTdY447vVYhNcV3dzZ3SdlXbtjA3Z2ums6evoUkvrXXqJC29tXrrkSHybblbetdG18ytwVuk62Ov9OQTT15fp6D2ffLyNR8-T3FDBYi4RkRXhWlkkK8U0njEsSo4MmVUUV1pXiKUCMsMJJ0ZIqTnjmpRIEgwxGYL7nXblu6_ehlg0Lhhb17q1XR8KpGD6DZGk_6OSUKWEUjKhd0fosut9Gm9LKSQZZZD8CtPCQvC2KtLwjfabAsFim01xyCaht3thP2ts-QMewkjAww4I2wXOrf_T8Vj2DdMPmDU</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Lind, Johan U.</creator><creator>Busbee, Travis A.</creator><creator>Valentine, Alexander D.</creator><creator>Pasqualini, Francesco S.</creator><creator>Yuan, Hongyan</creator><creator>Yadid, Moran</creator><creator>Park, Sung-Jin</creator><creator>Kotikian, Arda</creator><creator>Nesmith, Alexander P.</creator><creator>Campbell, Patrick H.</creator><creator>Vlassak, Joost J.</creator><creator>Lewis, Jennifer A.</creator><creator>Parker, Kevin K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8225-0211</orcidid></search><sort><creationdate>20170301</creationdate><title>Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing</title><author>Lind, Johan U. ; Busbee, Travis A. ; Valentine, Alexander D. ; Pasqualini, Francesco S. ; Yuan, Hongyan ; Yadid, Moran ; Park, Sung-Jin ; Kotikian, Arda ; Nesmith, Alexander P. ; Campbell, Patrick H. ; Vlassak, Joost J. ; Lewis, Jennifer A. ; Parker, Kevin K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-8138f36a9e18f95a2b527d61c3bf42faaf15f4205c6363c788a656a3d1832023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3-D printers</topic><topic>631/1647/277</topic><topic>631/61/2035</topic><topic>639/166/985</topic><topic>639/301/1005/1009</topic><topic>639/301/54/994</topic><topic>Biomaterials</topic><topic>Biomedical engineering</topic><topic>Condensed Matter Physics</topic><topic>Devices</topic><topic>Drugs</topic><topic>Electronics</topic><topic>Fabrication</topic><topic>Heart</topic><topic>Human behavior</topic><topic>Laminar</topic><topic>letter</topic><topic>Materials Science</topic><topic>Medical equipment</topic><topic>Myocardium - cytology</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Printing, Three-Dimensional - instrumentation</topic><topic>Self assembly</topic><topic>Sensors</topic><topic>Stem cells</topic><topic>Three dimensional printing</topic><topic>Tissue Array Analysis - instrumentation</topic><topic>Tissue engineering</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lind, Johan U.</creatorcontrib><creatorcontrib>Busbee, Travis A.</creatorcontrib><creatorcontrib>Valentine, Alexander D.</creatorcontrib><creatorcontrib>Pasqualini, Francesco S.</creatorcontrib><creatorcontrib>Yuan, Hongyan</creatorcontrib><creatorcontrib>Yadid, Moran</creatorcontrib><creatorcontrib>Park, Sung-Jin</creatorcontrib><creatorcontrib>Kotikian, Arda</creatorcontrib><creatorcontrib>Nesmith, Alexander P.</creatorcontrib><creatorcontrib>Campbell, Patrick H.</creatorcontrib><creatorcontrib>Vlassak, Joost J.</creatorcontrib><creatorcontrib>Lewis, Jennifer A.</creatorcontrib><creatorcontrib>Parker, Kevin K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lind, Johan U.</au><au>Busbee, Travis A.</au><au>Valentine, Alexander D.</au><au>Pasqualini, Francesco S.</au><au>Yuan, Hongyan</au><au>Yadid, Moran</au><au>Park, Sung-Jin</au><au>Kotikian, Arda</au><au>Nesmith, Alexander P.</au><au>Campbell, Patrick H.</au><au>Vlassak, Joost J.</au><au>Lewis, Jennifer A.</au><au>Parker, Kevin K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>16</volume><issue>3</issue><spage>303</spage><epage>308</epage><pages>303-308</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Heart-on-a-chip devices with integrated strain gauges for direct readout of tissue contractile strength allow for multiplexed drug-dose experiments and studies of functional maturation of cardiac tissue.
Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues
in vitro
, have emerged as a promising alternative
1
. However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes
2
. Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27775708</pmid><doi>10.1038/nmat4782</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8225-0211</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2017-03, Vol.16 (3), p.303-308 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904200184 |
source | Nature |
subjects | 3-D printers 631/1647/277 631/61/2035 639/166/985 639/301/1005/1009 639/301/54/994 Biomaterials Biomedical engineering Condensed Matter Physics Devices Drugs Electronics Fabrication Heart Human behavior Laminar letter Materials Science Medical equipment Myocardium - cytology Nanotechnology Optical and Electronic Materials Printing, Three-Dimensional - instrumentation Self assembly Sensors Stem cells Three dimensional printing Tissue Array Analysis - instrumentation Tissue engineering Tissues |
title | Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instrumented%20cardiac%20microphysiological%20devices%20via%20multimaterial%20three-dimensional%20printing&rft.jtitle=Nature%20materials&rft.au=Lind,%20Johan%20U.&rft.date=2017-03-01&rft.volume=16&rft.issue=3&rft.spage=303&rft.epage=308&rft.pages=303-308&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4782&rft_dat=%3Cproquest_cross%3E1904200184%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-8138f36a9e18f95a2b527d61c3bf42faaf15f4205c6363c788a656a3d1832023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1891854503&rft_id=info:pmid/27775708&rfr_iscdi=true |