Loading…
Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises
Atlantic Meridional Overturning Circulation (AMOC) transports huge amounts of heat from low to high latitudes and has a major influence on climate. Climate models have predicted that global warming will cause the AMOC to slow, but concrete evidence of such a slowdown has been scarce. Srokosz and Bry...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2015-06, Vol.348 (6241), p.1330-1330 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Atlantic Meridional Overturning Circulation (AMOC) transports huge amounts of heat from low to high latitudes and has a major influence on climate. Climate models have predicted that global warming will cause the AMOC to slow, but concrete evidence of such a slowdown has been scarce. Srokosz and Bryden review a decade of observations of the AMOC that reveal an unexpected amount of variability over time scales from seasonal to decadal, as well as a general weakening over this time.
Science
, this issue
10.1126/science.1255575
The importance of the Atlantic Meridional Overturning Circulation (AMOC) heat transport for climate is well acknowledged. Climate models predict that the AMOC will slow down under global warming, with substantial impacts, but measurements of ocean circulation have been inadequate to evaluate these predictions. Observations over the past decade have changed that situation, providing a detailed picture of variations in the AMOC. These observations reveal a surprising degree of AMOC variability in terms of the intraannual range, the amplitude and phase of the seasonal cycle, the interannual changes in strength affecting the ocean heat content, and the decline of the AMOC over the decade, both of the latter two exceeding the variations seen in climate models. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1255575 |