Loading…

Algorithmic Solvability of the Lifting-Extension Problem

Let X and Y be finite simplicial sets (e.g. finite simplicial complexes), both equipped with a free simplicial action of a finite group G . Assuming that Y is d -connected and dim X ≤ 2 d , for some d ≥ 1 , we provide an algorithm that computes the set of all equivariant homotopy classes of equivari...

Full description

Saved in:
Bibliographic Details
Published in:Discrete & computational geometry 2017-06, Vol.57 (4), p.915-965
Main Authors: Cadek, Martin, KrAeal, Marek, Vokrinek, Lukas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-43553964bb291f7bb6fe10ccc01c2d8fdce8db7ad7e156d95380fdc04c91afe83
cites cdi_FETCH-LOGICAL-c349t-43553964bb291f7bb6fe10ccc01c2d8fdce8db7ad7e156d95380fdc04c91afe83
container_end_page 965
container_issue 4
container_start_page 915
container_title Discrete & computational geometry
container_volume 57
creator Cadek, Martin
KrAeal, Marek
Vokrinek, Lukas
description Let X and Y be finite simplicial sets (e.g. finite simplicial complexes), both equipped with a free simplicial action of a finite group G . Assuming that Y is d -connected and dim X ≤ 2 d , for some d ≥ 1 , we provide an algorithm that computes the set of all equivariant homotopy classes of equivariant continuous maps | X | → | Y | ; the existence of such a map can be decided even for dim X ≤ 2 d + 1 . This yields the first algorithm for deciding topological embeddability of a k -dimensional finite simplicial complex into R n under the condition k ≤ 2 3 n - 1 . More generally, we present an algorithm that, given a lifting-extension problem satisfying an appropriate stability assumption, computes the set of all homotopy classes of solutions. This result is new even in the non-equivariant situation.
doi_str_mv 10.1007/s00454-016-9855-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904209600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321957197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-43553964bb291f7bb6fe10ccc01c2d8fdce8db7ad7e156d95380fdc04c91afe83</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2AGzfRm8ljkmUpvqCgoK7DTCZpU2YmNZmK_fem1IUIri4cvnO4fAhdErghANVtAmCcYSACK8k5FkdoQhgtMTDGjtEESKUwp5U4RWcprSHjCuQEyVm3DNGPq96b4jV0n3XjOz_uiuCKcWWLhXejH5b47mu0Q_JhKF5iaDrbn6MTV3fJXvzcKXq_v3ubP-LF88PTfLbAhjI1YkY5p0qwpikVcVXTCGcJGGOAmLKVrjVWtk1Vt5UlXLSKUwk5BGYUqZ2VdIquD7ubGD62No2698nYrqsHG7ZJEwWsBCUAMnr1B12HbRzyd5pIRWjJKkEyRQ6UiSGlaJ3eRN_XcacJ6L1LfXCps0u9d6lF7pSHTsrssLTx1_K_pW_DdnZF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891324761</pqid></control><display><type>article</type><title>Algorithmic Solvability of the Lifting-Extension Problem</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Cadek, Martin ; KrAeal, Marek ; Vokrinek, Lukas</creator><creatorcontrib>Cadek, Martin ; KrAeal, Marek ; Vokrinek, Lukas</creatorcontrib><description>Let X and Y be finite simplicial sets (e.g. finite simplicial complexes), both equipped with a free simplicial action of a finite group G . Assuming that Y is d -connected and dim X ≤ 2 d , for some d ≥ 1 , we provide an algorithm that computes the set of all equivariant homotopy classes of equivariant continuous maps | X | → | Y | ; the existence of such a map can be decided even for dim X ≤ 2 d + 1 . This yields the first algorithm for deciding topological embeddability of a k -dimensional finite simplicial complex into R n under the condition k ≤ 2 3 n - 1 . More generally, we present an algorithm that, given a lifting-extension problem satisfying an appropriate stability assumption, computes the set of all homotopy classes of solutions. This result is new even in the non-equivariant situation.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-016-9855-6</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Combinatorics ; Computational geometry ; Computational Mathematics and Numerical Analysis ; Mathematical analysis ; Mathematical models ; Mathematical problems ; Mathematics ; Mathematics and Statistics ; Stability ; Texts ; Topology</subject><ispartof>Discrete &amp; computational geometry, 2017-06, Vol.57 (4), p.915-965</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Discrete &amp; Computational Geometry is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-43553964bb291f7bb6fe10ccc01c2d8fdce8db7ad7e156d95380fdc04c91afe83</citedby><cites>FETCH-LOGICAL-c349t-43553964bb291f7bb6fe10ccc01c2d8fdce8db7ad7e156d95380fdc04c91afe83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Cadek, Martin</creatorcontrib><creatorcontrib>KrAeal, Marek</creatorcontrib><creatorcontrib>Vokrinek, Lukas</creatorcontrib><title>Algorithmic Solvability of the Lifting-Extension Problem</title><title>Discrete &amp; computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>Let X and Y be finite simplicial sets (e.g. finite simplicial complexes), both equipped with a free simplicial action of a finite group G . Assuming that Y is d -connected and dim X ≤ 2 d , for some d ≥ 1 , we provide an algorithm that computes the set of all equivariant homotopy classes of equivariant continuous maps | X | → | Y | ; the existence of such a map can be decided even for dim X ≤ 2 d + 1 . This yields the first algorithm for deciding topological embeddability of a k -dimensional finite simplicial complex into R n under the condition k ≤ 2 3 n - 1 . More generally, we present an algorithm that, given a lifting-extension problem satisfying an appropriate stability assumption, computes the set of all homotopy classes of solutions. This result is new even in the non-equivariant situation.</description><subject>Algorithms</subject><subject>Combinatorics</subject><subject>Computational geometry</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Stability</subject><subject>Texts</subject><subject>Topology</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wN2AGzfRm8ljkmUpvqCgoK7DTCZpU2YmNZmK_fem1IUIri4cvnO4fAhdErghANVtAmCcYSACK8k5FkdoQhgtMTDGjtEESKUwp5U4RWcprSHjCuQEyVm3DNGPq96b4jV0n3XjOz_uiuCKcWWLhXejH5b47mu0Q_JhKF5iaDrbn6MTV3fJXvzcKXq_v3ubP-LF88PTfLbAhjI1YkY5p0qwpikVcVXTCGcJGGOAmLKVrjVWtk1Vt5UlXLSKUwk5BGYUqZ2VdIquD7ubGD62No2698nYrqsHG7ZJEwWsBCUAMnr1B12HbRzyd5pIRWjJKkEyRQ6UiSGlaJ3eRN_XcacJ6L1LfXCps0u9d6lF7pSHTsrssLTx1_K_pW_DdnZF</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Cadek, Martin</creator><creator>KrAeal, Marek</creator><creator>Vokrinek, Lukas</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170601</creationdate><title>Algorithmic Solvability of the Lifting-Extension Problem</title><author>Cadek, Martin ; KrAeal, Marek ; Vokrinek, Lukas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-43553964bb291f7bb6fe10ccc01c2d8fdce8db7ad7e156d95380fdc04c91afe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Combinatorics</topic><topic>Computational geometry</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Stability</topic><topic>Texts</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cadek, Martin</creatorcontrib><creatorcontrib>KrAeal, Marek</creatorcontrib><creatorcontrib>Vokrinek, Lukas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete &amp; computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cadek, Martin</au><au>KrAeal, Marek</au><au>Vokrinek, Lukas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithmic Solvability of the Lifting-Extension Problem</atitle><jtitle>Discrete &amp; computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>57</volume><issue>4</issue><spage>915</spage><epage>965</epage><pages>915-965</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>Let X and Y be finite simplicial sets (e.g. finite simplicial complexes), both equipped with a free simplicial action of a finite group G . Assuming that Y is d -connected and dim X ≤ 2 d , for some d ≥ 1 , we provide an algorithm that computes the set of all equivariant homotopy classes of equivariant continuous maps | X | → | Y | ; the existence of such a map can be decided even for dim X ≤ 2 d + 1 . This yields the first algorithm for deciding topological embeddability of a k -dimensional finite simplicial complex into R n under the condition k ≤ 2 3 n - 1 . More generally, we present an algorithm that, given a lifting-extension problem satisfying an appropriate stability assumption, computes the set of all homotopy classes of solutions. This result is new even in the non-equivariant situation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00454-016-9855-6</doi><tpages>51</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0179-5376
ispartof Discrete & computational geometry, 2017-06, Vol.57 (4), p.915-965
issn 0179-5376
1432-0444
language eng
recordid cdi_proquest_miscellaneous_1904209600
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Algorithms
Combinatorics
Computational geometry
Computational Mathematics and Numerical Analysis
Mathematical analysis
Mathematical models
Mathematical problems
Mathematics
Mathematics and Statistics
Stability
Texts
Topology
title Algorithmic Solvability of the Lifting-Extension Problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithmic%20Solvability%20of%20the%20Lifting-Extension%20Problem&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Cadek,%20Martin&rft.date=2017-06-01&rft.volume=57&rft.issue=4&rft.spage=915&rft.epage=965&rft.pages=915-965&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-016-9855-6&rft_dat=%3Cproquest_cross%3E4321957197%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-43553964bb291f7bb6fe10ccc01c2d8fdce8db7ad7e156d95380fdc04c91afe83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1891324761&rft_id=info:pmid/&rfr_iscdi=true