Loading…

Multiple-Line Particle Focusing under Viscoelastic Flow in a Microfluidic Device

Particles in a viscoelastic fluid are typically focused at the center and four corners of a rectangular channel because of the combination of fluid elasticity and inertia forces. In this study, we observe the transition between single-line and multiple-line particle focusing in a microfluidic device...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2017-03, Vol.89 (6), p.3639-3647
Main Authors: Yang, Sei Hyun, Lee, Doo Jin, Youn, Jae Ryoun, Song, Young Seok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a446t-5f2752492539895003028991cd8d92516d09ba7e47977efa1bbb6e02b96817a43
cites cdi_FETCH-LOGICAL-a446t-5f2752492539895003028991cd8d92516d09ba7e47977efa1bbb6e02b96817a43
container_end_page 3647
container_issue 6
container_start_page 3639
container_title Analytical chemistry (Washington)
container_volume 89
creator Yang, Sei Hyun
Lee, Doo Jin
Youn, Jae Ryoun
Song, Young Seok
description Particles in a viscoelastic fluid are typically focused at the center and four corners of a rectangular channel because of the combination of fluid elasticity and inertia forces. In this study, we observe the transition between single-line and multiple-line particle focusing in a microfluidic device induced by the synergetic effect of inertia and viscoelasticity. The elastic and inertial forces acting on suspended particles are manipulated by controlling the concentration of dilute polymer solution and the flow rate of a fluid. The finding shows that the confinement effects determined by the channel aspect ratio and the inlet geometry lead to the multiple-line focusing of particles in the microfluidic channel due to the fluid elasticity and hydrodynamic behavior of the fluid. A microfluidic channel with high channel aspect ratio possesses broad minimal region of the elastic force across the channel, which generates a wide particle focusing band rather than a single particle focusing at the center. The multiple-line particle focusing occurs as the inertial force outweighs the elastic force, resulting in the particle migration toward the channel sidewalls.
doi_str_mv 10.1021/acs.analchem.6b05052
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904210422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321500413</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-5f2752492539895003028991cd8d92516d09ba7e47977efa1bbb6e02b96817a43</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxa2Kqiy036BCkbj0ku2ME_87ItoFpEXl0PYaOc4EjLzJEicgvn0d7QJSD-1hZGn8e2_Gfox9RlgicPxqXVzazgZ3R5ulrEGA4O_YAgWHXGrND9gCAIqcK4BDdhTjPQAioPzADrnmXEhUC3ZzPYXRbwPla99RdmOH0btA2ap3U_TdbTZ1DQ3Zbx9dT8HGdJutQv-U-S6z2bV3Q9-GyTep_Y0evaOP7H1rQ6RP-_OY_Vp9_3l-ma9_XFydn61zW5ZyzEXLleCl4aIw2oi0KHBtDLpGN6mJsgFTW0WlMkpRa7Gua0nAayM1KlsWx-zLznc79A8TxbHapB0pBNtRP8UKDZQcU_H_o1qhEIiFTOjpX-h9Pw3pl2dKl7pINRuWOyq9PsaB2mo7-I0dniuEag6nSuFUL-FU-3CS7GRvPtUbal5FL2kkAHbALH8b_C_PPwLpm0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884838482</pqid></control><display><type>article</type><title>Multiple-Line Particle Focusing under Viscoelastic Flow in a Microfluidic Device</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Yang, Sei Hyun ; Lee, Doo Jin ; Youn, Jae Ryoun ; Song, Young Seok</creator><creatorcontrib>Yang, Sei Hyun ; Lee, Doo Jin ; Youn, Jae Ryoun ; Song, Young Seok</creatorcontrib><description>Particles in a viscoelastic fluid are typically focused at the center and four corners of a rectangular channel because of the combination of fluid elasticity and inertia forces. In this study, we observe the transition between single-line and multiple-line particle focusing in a microfluidic device induced by the synergetic effect of inertia and viscoelasticity. The elastic and inertial forces acting on suspended particles are manipulated by controlling the concentration of dilute polymer solution and the flow rate of a fluid. The finding shows that the confinement effects determined by the channel aspect ratio and the inlet geometry lead to the multiple-line focusing of particles in the microfluidic channel due to the fluid elasticity and hydrodynamic behavior of the fluid. A microfluidic channel with high channel aspect ratio possesses broad minimal region of the elastic force across the channel, which generates a wide particle focusing band rather than a single particle focusing at the center. The multiple-line particle focusing occurs as the inertial force outweighs the elastic force, resulting in the particle migration toward the channel sidewalls.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b05052</identifier><identifier>PMID: 28225617</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aspect ratio ; Channels ; Devices ; Effects ; Fluid flow ; Fluids ; Inertia ; Microfluidics ; Polymers ; Viscoelasticity</subject><ispartof>Analytical chemistry (Washington), 2017-03, Vol.89 (6), p.3639-3647</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 21, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-5f2752492539895003028991cd8d92516d09ba7e47977efa1bbb6e02b96817a43</citedby><cites>FETCH-LOGICAL-a446t-5f2752492539895003028991cd8d92516d09ba7e47977efa1bbb6e02b96817a43</cites><orcidid>0000-0003-4830-6271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28225617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Sei Hyun</creatorcontrib><creatorcontrib>Lee, Doo Jin</creatorcontrib><creatorcontrib>Youn, Jae Ryoun</creatorcontrib><creatorcontrib>Song, Young Seok</creatorcontrib><title>Multiple-Line Particle Focusing under Viscoelastic Flow in a Microfluidic Device</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Particles in a viscoelastic fluid are typically focused at the center and four corners of a rectangular channel because of the combination of fluid elasticity and inertia forces. In this study, we observe the transition between single-line and multiple-line particle focusing in a microfluidic device induced by the synergetic effect of inertia and viscoelasticity. The elastic and inertial forces acting on suspended particles are manipulated by controlling the concentration of dilute polymer solution and the flow rate of a fluid. The finding shows that the confinement effects determined by the channel aspect ratio and the inlet geometry lead to the multiple-line focusing of particles in the microfluidic channel due to the fluid elasticity and hydrodynamic behavior of the fluid. A microfluidic channel with high channel aspect ratio possesses broad minimal region of the elastic force across the channel, which generates a wide particle focusing band rather than a single particle focusing at the center. The multiple-line particle focusing occurs as the inertial force outweighs the elastic force, resulting in the particle migration toward the channel sidewalls.</description><subject>Aspect ratio</subject><subject>Channels</subject><subject>Devices</subject><subject>Effects</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Inertia</subject><subject>Microfluidics</subject><subject>Polymers</subject><subject>Viscoelasticity</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkU9P3DAQxa2Kqiy036BCkbj0ku2ME_87ItoFpEXl0PYaOc4EjLzJEicgvn0d7QJSD-1hZGn8e2_Gfox9RlgicPxqXVzazgZ3R5ulrEGA4O_YAgWHXGrND9gCAIqcK4BDdhTjPQAioPzADrnmXEhUC3ZzPYXRbwPla99RdmOH0btA2ap3U_TdbTZ1DQ3Zbx9dT8HGdJutQv-U-S6z2bV3Q9-GyTep_Y0evaOP7H1rQ6RP-_OY_Vp9_3l-ma9_XFydn61zW5ZyzEXLleCl4aIw2oi0KHBtDLpGN6mJsgFTW0WlMkpRa7Gua0nAayM1KlsWx-zLznc79A8TxbHapB0pBNtRP8UKDZQcU_H_o1qhEIiFTOjpX-h9Pw3pl2dKl7pINRuWOyq9PsaB2mo7-I0dniuEag6nSuFUL-FU-3CS7GRvPtUbal5FL2kkAHbALH8b_C_PPwLpm0Y</recordid><startdate>20170321</startdate><enddate>20170321</enddate><creator>Yang, Sei Hyun</creator><creator>Lee, Doo Jin</creator><creator>Youn, Jae Ryoun</creator><creator>Song, Young Seok</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4830-6271</orcidid></search><sort><creationdate>20170321</creationdate><title>Multiple-Line Particle Focusing under Viscoelastic Flow in a Microfluidic Device</title><author>Yang, Sei Hyun ; Lee, Doo Jin ; Youn, Jae Ryoun ; Song, Young Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-5f2752492539895003028991cd8d92516d09ba7e47977efa1bbb6e02b96817a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aspect ratio</topic><topic>Channels</topic><topic>Devices</topic><topic>Effects</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Inertia</topic><topic>Microfluidics</topic><topic>Polymers</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Sei Hyun</creatorcontrib><creatorcontrib>Lee, Doo Jin</creatorcontrib><creatorcontrib>Youn, Jae Ryoun</creatorcontrib><creatorcontrib>Song, Young Seok</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Sei Hyun</au><au>Lee, Doo Jin</au><au>Youn, Jae Ryoun</au><au>Song, Young Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-Line Particle Focusing under Viscoelastic Flow in a Microfluidic Device</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-03-21</date><risdate>2017</risdate><volume>89</volume><issue>6</issue><spage>3639</spage><epage>3647</epage><pages>3639-3647</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Particles in a viscoelastic fluid are typically focused at the center and four corners of a rectangular channel because of the combination of fluid elasticity and inertia forces. In this study, we observe the transition between single-line and multiple-line particle focusing in a microfluidic device induced by the synergetic effect of inertia and viscoelasticity. The elastic and inertial forces acting on suspended particles are manipulated by controlling the concentration of dilute polymer solution and the flow rate of a fluid. The finding shows that the confinement effects determined by the channel aspect ratio and the inlet geometry lead to the multiple-line focusing of particles in the microfluidic channel due to the fluid elasticity and hydrodynamic behavior of the fluid. A microfluidic channel with high channel aspect ratio possesses broad minimal region of the elastic force across the channel, which generates a wide particle focusing band rather than a single particle focusing at the center. The multiple-line particle focusing occurs as the inertial force outweighs the elastic force, resulting in the particle migration toward the channel sidewalls.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28225617</pmid><doi>10.1021/acs.analchem.6b05052</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4830-6271</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2017-03, Vol.89 (6), p.3639-3647
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1904210422
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Aspect ratio
Channels
Devices
Effects
Fluid flow
Fluids
Inertia
Microfluidics
Polymers
Viscoelasticity
title Multiple-Line Particle Focusing under Viscoelastic Flow in a Microfluidic Device
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-Line%20Particle%20Focusing%20under%20Viscoelastic%20Flow%20in%20a%20Microfluidic%20Device&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Yang,%20Sei%20Hyun&rft.date=2017-03-21&rft.volume=89&rft.issue=6&rft.spage=3639&rft.epage=3647&rft.pages=3639-3647&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b05052&rft_dat=%3Cproquest_cross%3E4321500413%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a446t-5f2752492539895003028991cd8d92516d09ba7e47977efa1bbb6e02b96817a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1884838482&rft_id=info:pmid/28225617&rfr_iscdi=true