Loading…
Multiple-Line Particle Focusing under Viscoelastic Flow in a Microfluidic Device
Particles in a viscoelastic fluid are typically focused at the center and four corners of a rectangular channel because of the combination of fluid elasticity and inertia forces. In this study, we observe the transition between single-line and multiple-line particle focusing in a microfluidic device...
Saved in:
Published in: | Analytical chemistry (Washington) 2017-03, Vol.89 (6), p.3639-3647 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a446t-5f2752492539895003028991cd8d92516d09ba7e47977efa1bbb6e02b96817a43 |
---|---|
cites | cdi_FETCH-LOGICAL-a446t-5f2752492539895003028991cd8d92516d09ba7e47977efa1bbb6e02b96817a43 |
container_end_page | 3647 |
container_issue | 6 |
container_start_page | 3639 |
container_title | Analytical chemistry (Washington) |
container_volume | 89 |
creator | Yang, Sei Hyun Lee, Doo Jin Youn, Jae Ryoun Song, Young Seok |
description | Particles in a viscoelastic fluid are typically focused at the center and four corners of a rectangular channel because of the combination of fluid elasticity and inertia forces. In this study, we observe the transition between single-line and multiple-line particle focusing in a microfluidic device induced by the synergetic effect of inertia and viscoelasticity. The elastic and inertial forces acting on suspended particles are manipulated by controlling the concentration of dilute polymer solution and the flow rate of a fluid. The finding shows that the confinement effects determined by the channel aspect ratio and the inlet geometry lead to the multiple-line focusing of particles in the microfluidic channel due to the fluid elasticity and hydrodynamic behavior of the fluid. A microfluidic channel with high channel aspect ratio possesses broad minimal region of the elastic force across the channel, which generates a wide particle focusing band rather than a single particle focusing at the center. The multiple-line particle focusing occurs as the inertial force outweighs the elastic force, resulting in the particle migration toward the channel sidewalls. |
doi_str_mv | 10.1021/acs.analchem.6b05052 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904210422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321500413</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-5f2752492539895003028991cd8d92516d09ba7e47977efa1bbb6e02b96817a43</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxa2Kqiy036BCkbj0ku2ME_87ItoFpEXl0PYaOc4EjLzJEicgvn0d7QJSD-1hZGn8e2_Gfox9RlgicPxqXVzazgZ3R5ulrEGA4O_YAgWHXGrND9gCAIqcK4BDdhTjPQAioPzADrnmXEhUC3ZzPYXRbwPla99RdmOH0btA2ap3U_TdbTZ1DQ3Zbx9dT8HGdJutQv-U-S6z2bV3Q9-GyTep_Y0evaOP7H1rQ6RP-_OY_Vp9_3l-ma9_XFydn61zW5ZyzEXLleCl4aIw2oi0KHBtDLpGN6mJsgFTW0WlMkpRa7Gua0nAayM1KlsWx-zLznc79A8TxbHapB0pBNtRP8UKDZQcU_H_o1qhEIiFTOjpX-h9Pw3pl2dKl7pINRuWOyq9PsaB2mo7-I0dniuEag6nSuFUL-FU-3CS7GRvPtUbal5FL2kkAHbALH8b_C_PPwLpm0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884838482</pqid></control><display><type>article</type><title>Multiple-Line Particle Focusing under Viscoelastic Flow in a Microfluidic Device</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Yang, Sei Hyun ; Lee, Doo Jin ; Youn, Jae Ryoun ; Song, Young Seok</creator><creatorcontrib>Yang, Sei Hyun ; Lee, Doo Jin ; Youn, Jae Ryoun ; Song, Young Seok</creatorcontrib><description>Particles in a viscoelastic fluid are typically focused at the center and four corners of a rectangular channel because of the combination of fluid elasticity and inertia forces. In this study, we observe the transition between single-line and multiple-line particle focusing in a microfluidic device induced by the synergetic effect of inertia and viscoelasticity. The elastic and inertial forces acting on suspended particles are manipulated by controlling the concentration of dilute polymer solution and the flow rate of a fluid. The finding shows that the confinement effects determined by the channel aspect ratio and the inlet geometry lead to the multiple-line focusing of particles in the microfluidic channel due to the fluid elasticity and hydrodynamic behavior of the fluid. A microfluidic channel with high channel aspect ratio possesses broad minimal region of the elastic force across the channel, which generates a wide particle focusing band rather than a single particle focusing at the center. The multiple-line particle focusing occurs as the inertial force outweighs the elastic force, resulting in the particle migration toward the channel sidewalls.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b05052</identifier><identifier>PMID: 28225617</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aspect ratio ; Channels ; Devices ; Effects ; Fluid flow ; Fluids ; Inertia ; Microfluidics ; Polymers ; Viscoelasticity</subject><ispartof>Analytical chemistry (Washington), 2017-03, Vol.89 (6), p.3639-3647</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 21, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-5f2752492539895003028991cd8d92516d09ba7e47977efa1bbb6e02b96817a43</citedby><cites>FETCH-LOGICAL-a446t-5f2752492539895003028991cd8d92516d09ba7e47977efa1bbb6e02b96817a43</cites><orcidid>0000-0003-4830-6271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28225617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Sei Hyun</creatorcontrib><creatorcontrib>Lee, Doo Jin</creatorcontrib><creatorcontrib>Youn, Jae Ryoun</creatorcontrib><creatorcontrib>Song, Young Seok</creatorcontrib><title>Multiple-Line Particle Focusing under Viscoelastic Flow in a Microfluidic Device</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Particles in a viscoelastic fluid are typically focused at the center and four corners of a rectangular channel because of the combination of fluid elasticity and inertia forces. In this study, we observe the transition between single-line and multiple-line particle focusing in a microfluidic device induced by the synergetic effect of inertia and viscoelasticity. The elastic and inertial forces acting on suspended particles are manipulated by controlling the concentration of dilute polymer solution and the flow rate of a fluid. The finding shows that the confinement effects determined by the channel aspect ratio and the inlet geometry lead to the multiple-line focusing of particles in the microfluidic channel due to the fluid elasticity and hydrodynamic behavior of the fluid. A microfluidic channel with high channel aspect ratio possesses broad minimal region of the elastic force across the channel, which generates a wide particle focusing band rather than a single particle focusing at the center. The multiple-line particle focusing occurs as the inertial force outweighs the elastic force, resulting in the particle migration toward the channel sidewalls.</description><subject>Aspect ratio</subject><subject>Channels</subject><subject>Devices</subject><subject>Effects</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Inertia</subject><subject>Microfluidics</subject><subject>Polymers</subject><subject>Viscoelasticity</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkU9P3DAQxa2Kqiy036BCkbj0ku2ME_87ItoFpEXl0PYaOc4EjLzJEicgvn0d7QJSD-1hZGn8e2_Gfox9RlgicPxqXVzazgZ3R5ulrEGA4O_YAgWHXGrND9gCAIqcK4BDdhTjPQAioPzADrnmXEhUC3ZzPYXRbwPla99RdmOH0btA2ap3U_TdbTZ1DQ3Zbx9dT8HGdJutQv-U-S6z2bV3Q9-GyTep_Y0evaOP7H1rQ6RP-_OY_Vp9_3l-ma9_XFydn61zW5ZyzEXLleCl4aIw2oi0KHBtDLpGN6mJsgFTW0WlMkpRa7Gua0nAayM1KlsWx-zLznc79A8TxbHapB0pBNtRP8UKDZQcU_H_o1qhEIiFTOjpX-h9Pw3pl2dKl7pINRuWOyq9PsaB2mo7-I0dniuEag6nSuFUL-FU-3CS7GRvPtUbal5FL2kkAHbALH8b_C_PPwLpm0Y</recordid><startdate>20170321</startdate><enddate>20170321</enddate><creator>Yang, Sei Hyun</creator><creator>Lee, Doo Jin</creator><creator>Youn, Jae Ryoun</creator><creator>Song, Young Seok</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4830-6271</orcidid></search><sort><creationdate>20170321</creationdate><title>Multiple-Line Particle Focusing under Viscoelastic Flow in a Microfluidic Device</title><author>Yang, Sei Hyun ; Lee, Doo Jin ; Youn, Jae Ryoun ; Song, Young Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-5f2752492539895003028991cd8d92516d09ba7e47977efa1bbb6e02b96817a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aspect ratio</topic><topic>Channels</topic><topic>Devices</topic><topic>Effects</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Inertia</topic><topic>Microfluidics</topic><topic>Polymers</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Sei Hyun</creatorcontrib><creatorcontrib>Lee, Doo Jin</creatorcontrib><creatorcontrib>Youn, Jae Ryoun</creatorcontrib><creatorcontrib>Song, Young Seok</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Sei Hyun</au><au>Lee, Doo Jin</au><au>Youn, Jae Ryoun</au><au>Song, Young Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-Line Particle Focusing under Viscoelastic Flow in a Microfluidic Device</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-03-21</date><risdate>2017</risdate><volume>89</volume><issue>6</issue><spage>3639</spage><epage>3647</epage><pages>3639-3647</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Particles in a viscoelastic fluid are typically focused at the center and four corners of a rectangular channel because of the combination of fluid elasticity and inertia forces. In this study, we observe the transition between single-line and multiple-line particle focusing in a microfluidic device induced by the synergetic effect of inertia and viscoelasticity. The elastic and inertial forces acting on suspended particles are manipulated by controlling the concentration of dilute polymer solution and the flow rate of a fluid. The finding shows that the confinement effects determined by the channel aspect ratio and the inlet geometry lead to the multiple-line focusing of particles in the microfluidic channel due to the fluid elasticity and hydrodynamic behavior of the fluid. A microfluidic channel with high channel aspect ratio possesses broad minimal region of the elastic force across the channel, which generates a wide particle focusing band rather than a single particle focusing at the center. The multiple-line particle focusing occurs as the inertial force outweighs the elastic force, resulting in the particle migration toward the channel sidewalls.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28225617</pmid><doi>10.1021/acs.analchem.6b05052</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4830-6271</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2017-03, Vol.89 (6), p.3639-3647 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904210422 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Aspect ratio Channels Devices Effects Fluid flow Fluids Inertia Microfluidics Polymers Viscoelasticity |
title | Multiple-Line Particle Focusing under Viscoelastic Flow in a Microfluidic Device |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-Line%20Particle%20Focusing%20under%20Viscoelastic%20Flow%20in%20a%20Microfluidic%20Device&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Yang,%20Sei%20Hyun&rft.date=2017-03-21&rft.volume=89&rft.issue=6&rft.spage=3639&rft.epage=3647&rft.pages=3639-3647&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b05052&rft_dat=%3Cproquest_cross%3E4321500413%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a446t-5f2752492539895003028991cd8d92516d09ba7e47977efa1bbb6e02b96817a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1884838482&rft_id=info:pmid/28225617&rfr_iscdi=true |