Loading…
Elucidating the diffusion pathway of protons in ammonium polyphosphate: a potential electrolyte for intermediate temperature fuel cells
Ammonium polyphosphate (NH4PO3) is a potential electrolyte material for intermediate temperature fuel cells (150-250 degree C). The crystal structure of NH4PO3, including the H positions, is unravelled by neutron powder diffraction (NPD) data by successive Fourier synthesis from the polyphosphate ba...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2017, Vol.5 (17), p.7839-7844 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c440t-622a11a4ec1b5abf9250a590b763048f3d8ce784426bf160497839b422e471673 |
---|---|
cites | cdi_FETCH-LOGICAL-c440t-622a11a4ec1b5abf9250a590b763048f3d8ce784426bf160497839b422e471673 |
container_end_page | 7844 |
container_issue | 17 |
container_start_page | 7839 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 5 |
creator | Sun, Chunwen Lopez, Carlos Alberto Alonso, Jose Antonio |
description | Ammonium polyphosphate (NH4PO3) is a potential electrolyte material for intermediate temperature fuel cells (150-250 degree C). The crystal structure of NH4PO3, including the H positions, is unravelled by neutron powder diffraction (NPD) data by successive Fourier synthesis from the polyphosphate backbone. The structure consists of zig-zag chains aligned along the [001] directions of tetrahedral phosphate PO4 units that are connected through O3 atoms with a P-O3-P angle of 126.3(5) degree . The proton conductivity mechanism of NH4PO3 is clarified from the thermal evolution of the structure. It shows that some H atoms subtly shift at high temperatures, resulting in a weakening of certain H-bonds, thus increasing the lability of those H atoms involved in the proton conduction mechanism. Conductivity measurements in humid air and H2 of NH4PO3 show high proton conductivities of 1.2 10-5 to 2.61 10-3 S cm-1 and 2.2 10-5 to 2.69 10-3 S cm-1, respectively, in the temperature range of 50 degree C to 275 degree C. |
doi_str_mv | 10.1039/c7ta01404j |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904211376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901743172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-622a11a4ec1b5abf9250a590b763048f3d8ce784426bf160497839b422e471673</originalsourceid><addsrcrecordid>eNqNkc9OwzAMxisEEtPYhSfIESENkjRtGm7TNP5pEpdxrtLUoZnSpiSp0J6A1yYwxBlfbPn7-ZMtZ9klwTcE5-JW8SgxYZjtT7IZxQVecibK07-6qs6zRQh7nKLCuBRiln1u7KRMK6MZ3lDsALVG6ykYN6BRxu5DHpDTaPQuuiEgMyDZ924wU49GZw9j58LYyQh3SKZGhCEaaRFYUNEnPQLSzqexCL6H1iQSRehH8DJOPokTWKTA2nCRnWlpAyx-8zx7vd_s1o_L7cvD03q1XSrGcFyWlEpCJANFmkI2WtACy0Lghpc5ZpXO20oBrxijZaNJiZngVS4aRikwTkqez7Oro2866X2CEOvehO8N5ABuCjURmFFC8uT3D5RwlhNOE3p9RJV3IXjQ9ehNL_2hJrj-_k295rvVz2-e8y82UINc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901743172</pqid></control><display><type>article</type><title>Elucidating the diffusion pathway of protons in ammonium polyphosphate: a potential electrolyte for intermediate temperature fuel cells</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Sun, Chunwen ; Lopez, Carlos Alberto ; Alonso, Jose Antonio</creator><creatorcontrib>Sun, Chunwen ; Lopez, Carlos Alberto ; Alonso, Jose Antonio</creatorcontrib><description>Ammonium polyphosphate (NH4PO3) is a potential electrolyte material for intermediate temperature fuel cells (150-250 degree C). The crystal structure of NH4PO3, including the H positions, is unravelled by neutron powder diffraction (NPD) data by successive Fourier synthesis from the polyphosphate backbone. The structure consists of zig-zag chains aligned along the [001] directions of tetrahedral phosphate PO4 units that are connected through O3 atoms with a P-O3-P angle of 126.3(5) degree . The proton conductivity mechanism of NH4PO3 is clarified from the thermal evolution of the structure. It shows that some H atoms subtly shift at high temperatures, resulting in a weakening of certain H-bonds, thus increasing the lability of those H atoms involved in the proton conduction mechanism. Conductivity measurements in humid air and H2 of NH4PO3 show high proton conductivities of 1.2 10-5 to 2.61 10-3 S cm-1 and 2.2 10-5 to 2.69 10-3 S cm-1, respectively, in the temperature range of 50 degree C to 275 degree C.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c7ta01404j</identifier><language>eng</language><subject>Crystal structure ; Diffraction ; Diffusion ; Electrolytes ; Fourier analysis ; Fuel cells ; Phosphates ; Polyphosphates</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2017, Vol.5 (17), p.7839-7844</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-622a11a4ec1b5abf9250a590b763048f3d8ce784426bf160497839b422e471673</citedby><cites>FETCH-LOGICAL-c440t-622a11a4ec1b5abf9250a590b763048f3d8ce784426bf160497839b422e471673</cites><orcidid>0000-0002-5964-7103 ; 0000-0002-3610-9396 ; 0000-0001-5329-1225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Sun, Chunwen</creatorcontrib><creatorcontrib>Lopez, Carlos Alberto</creatorcontrib><creatorcontrib>Alonso, Jose Antonio</creatorcontrib><title>Elucidating the diffusion pathway of protons in ammonium polyphosphate: a potential electrolyte for intermediate temperature fuel cells</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Ammonium polyphosphate (NH4PO3) is a potential electrolyte material for intermediate temperature fuel cells (150-250 degree C). The crystal structure of NH4PO3, including the H positions, is unravelled by neutron powder diffraction (NPD) data by successive Fourier synthesis from the polyphosphate backbone. The structure consists of zig-zag chains aligned along the [001] directions of tetrahedral phosphate PO4 units that are connected through O3 atoms with a P-O3-P angle of 126.3(5) degree . The proton conductivity mechanism of NH4PO3 is clarified from the thermal evolution of the structure. It shows that some H atoms subtly shift at high temperatures, resulting in a weakening of certain H-bonds, thus increasing the lability of those H atoms involved in the proton conduction mechanism. Conductivity measurements in humid air and H2 of NH4PO3 show high proton conductivities of 1.2 10-5 to 2.61 10-3 S cm-1 and 2.2 10-5 to 2.69 10-3 S cm-1, respectively, in the temperature range of 50 degree C to 275 degree C.</description><subject>Crystal structure</subject><subject>Diffraction</subject><subject>Diffusion</subject><subject>Electrolytes</subject><subject>Fourier analysis</subject><subject>Fuel cells</subject><subject>Phosphates</subject><subject>Polyphosphates</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkc9OwzAMxisEEtPYhSfIESENkjRtGm7TNP5pEpdxrtLUoZnSpiSp0J6A1yYwxBlfbPn7-ZMtZ9klwTcE5-JW8SgxYZjtT7IZxQVecibK07-6qs6zRQh7nKLCuBRiln1u7KRMK6MZ3lDsALVG6ykYN6BRxu5DHpDTaPQuuiEgMyDZ924wU49GZw9j58LYyQh3SKZGhCEaaRFYUNEnPQLSzqexCL6H1iQSRehH8DJOPokTWKTA2nCRnWlpAyx-8zx7vd_s1o_L7cvD03q1XSrGcFyWlEpCJANFmkI2WtACy0Lghpc5ZpXO20oBrxijZaNJiZngVS4aRikwTkqez7Oro2866X2CEOvehO8N5ABuCjURmFFC8uT3D5RwlhNOE3p9RJV3IXjQ9ehNL_2hJrj-_k295rvVz2-e8y82UINc</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Sun, Chunwen</creator><creator>Lopez, Carlos Alberto</creator><creator>Alonso, Jose Antonio</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5964-7103</orcidid><orcidid>https://orcid.org/0000-0002-3610-9396</orcidid><orcidid>https://orcid.org/0000-0001-5329-1225</orcidid></search><sort><creationdate>2017</creationdate><title>Elucidating the diffusion pathway of protons in ammonium polyphosphate: a potential electrolyte for intermediate temperature fuel cells</title><author>Sun, Chunwen ; Lopez, Carlos Alberto ; Alonso, Jose Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-622a11a4ec1b5abf9250a590b763048f3d8ce784426bf160497839b422e471673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Crystal structure</topic><topic>Diffraction</topic><topic>Diffusion</topic><topic>Electrolytes</topic><topic>Fourier analysis</topic><topic>Fuel cells</topic><topic>Phosphates</topic><topic>Polyphosphates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Chunwen</creatorcontrib><creatorcontrib>Lopez, Carlos Alberto</creatorcontrib><creatorcontrib>Alonso, Jose Antonio</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Chunwen</au><au>Lopez, Carlos Alberto</au><au>Alonso, Jose Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the diffusion pathway of protons in ammonium polyphosphate: a potential electrolyte for intermediate temperature fuel cells</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2017</date><risdate>2017</risdate><volume>5</volume><issue>17</issue><spage>7839</spage><epage>7844</epage><pages>7839-7844</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Ammonium polyphosphate (NH4PO3) is a potential electrolyte material for intermediate temperature fuel cells (150-250 degree C). The crystal structure of NH4PO3, including the H positions, is unravelled by neutron powder diffraction (NPD) data by successive Fourier synthesis from the polyphosphate backbone. The structure consists of zig-zag chains aligned along the [001] directions of tetrahedral phosphate PO4 units that are connected through O3 atoms with a P-O3-P angle of 126.3(5) degree . The proton conductivity mechanism of NH4PO3 is clarified from the thermal evolution of the structure. It shows that some H atoms subtly shift at high temperatures, resulting in a weakening of certain H-bonds, thus increasing the lability of those H atoms involved in the proton conduction mechanism. Conductivity measurements in humid air and H2 of NH4PO3 show high proton conductivities of 1.2 10-5 to 2.61 10-3 S cm-1 and 2.2 10-5 to 2.69 10-3 S cm-1, respectively, in the temperature range of 50 degree C to 275 degree C.</abstract><doi>10.1039/c7ta01404j</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5964-7103</orcidid><orcidid>https://orcid.org/0000-0002-3610-9396</orcidid><orcidid>https://orcid.org/0000-0001-5329-1225</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2017, Vol.5 (17), p.7839-7844 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904211376 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Crystal structure Diffraction Diffusion Electrolytes Fourier analysis Fuel cells Phosphates Polyphosphates |
title | Elucidating the diffusion pathway of protons in ammonium polyphosphate: a potential electrolyte for intermediate temperature fuel cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20diffusion%20pathway%20of%20protons%20in%20ammonium%20polyphosphate:%20a%20potential%20electrolyte%20for%20intermediate%20temperature%20fuel%20cells&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Sun,%20Chunwen&rft.date=2017&rft.volume=5&rft.issue=17&rft.spage=7839&rft.epage=7844&rft.pages=7839-7844&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c7ta01404j&rft_dat=%3Cproquest_cross%3E1901743172%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c440t-622a11a4ec1b5abf9250a590b763048f3d8ce784426bf160497839b422e471673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1901743172&rft_id=info:pmid/&rfr_iscdi=true |