Loading…

Investigating the removal of methyl tertiary butyl ether (MTBE) from water using raw and modified fly ash waste materials

Classical techniques for remediation of methyl tertiary butyl ether (MTBE) from contaminated water sources are characterized by inherent limitations due to its unique physical and chemical characteristics, making further remediation researches promising. Fly ash (FA), which is a waste material deriv...

Full description

Saved in:
Bibliographic Details
Published in:Desalination and water treatment 2016-11, Vol.57 (54), p.26307-26312
Main Authors: Adebayo, S.B., Tawabini, B.S., Atieh, M.A., Abuilaiwi, F.A., Alfadul, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-20289139a7cb20891e081f436430ec82ccbc70603c9477d318d3787fb249d25e3
cites cdi_FETCH-LOGICAL-c403t-20289139a7cb20891e081f436430ec82ccbc70603c9477d318d3787fb249d25e3
container_end_page 26312
container_issue 54
container_start_page 26307
container_title Desalination and water treatment
container_volume 57
creator Adebayo, S.B.
Tawabini, B.S.
Atieh, M.A.
Abuilaiwi, F.A.
Alfadul, S.
description Classical techniques for remediation of methyl tertiary butyl ether (MTBE) from contaminated water sources are characterized by inherent limitations due to its unique physical and chemical characteristics, making further remediation researches promising. Fly ash (FA), which is a waste material derived from the combustion of coal or heavy liquid fuel has been reported to show favorable adsorption results with selected metals, dyes, and some organics in aqueous solution. In this study, raw FA, acid-treated FA, and metal oxide (silver, iron, and aluminum) impregnated FA were assessed on a bench scale, for MTBE adsorption in contaminated water system and benchmarked against activated carbon (AC). Results showed that only silver oxide (Ag2O) impregnated FA achieved ~24% removal of MTBE from aqueous solution, while the other tested adsorbent materials achieved 
doi_str_mv 10.1080/19443994.2016.1172985
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904211688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1944398624043388</els_id><sourcerecordid>4219374401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-20289139a7cb20891e081f436430ec82ccbc70603c9477d318d3787fb249d25e3</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhosoKOpPEAJe9LBrvtokJ1HxCxQv6zlk06kbaRtN0l3235uyK4gXnct88MwLM29RnBA8JVjiC6I4Z0rxKcWkmhIiqJLlTnEwzidMyWr3R71fHMf4jnOUXJScHhTrx34JMbk3k1z_htICUIDOL02LfIM6SIt1ixKE5ExYo_mQcpuHENDZ8-z69hw1wXdoZTKChjhKBLNCpq9R52vXOKhR066RiYsMxQSoG1Fn2nhU7DU5wfE2Hxavd7ezm4fJ08v9483V08RyzNKEYioVYcoIO6c4l4AlaTirOMNgJbV2bgWuMLOKC1EzImsmpGjmlKualsAOi7ON7kfwn0O-VXcuWmhb04MfoiYKc0pIJeV_UCIqShXP6Okv9N0Poc-HaCIZxhUntMxUuaFs8DEGaPRHcF3-pCZYj_bpb_v0aJ_e2pf3Ljd7kB-zdBB0tA56C7ULYJOuvftD4QuA_p8-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830064125</pqid></control><display><type>article</type><title>Investigating the removal of methyl tertiary butyl ether (MTBE) from water using raw and modified fly ash waste materials</title><source>ScienceDirect</source><creator>Adebayo, S.B. ; Tawabini, B.S. ; Atieh, M.A. ; Abuilaiwi, F.A. ; Alfadul, S.</creator><creatorcontrib>Adebayo, S.B. ; Tawabini, B.S. ; Atieh, M.A. ; Abuilaiwi, F.A. ; Alfadul, S.</creatorcontrib><description>Classical techniques for remediation of methyl tertiary butyl ether (MTBE) from contaminated water sources are characterized by inherent limitations due to its unique physical and chemical characteristics, making further remediation researches promising. Fly ash (FA), which is a waste material derived from the combustion of coal or heavy liquid fuel has been reported to show favorable adsorption results with selected metals, dyes, and some organics in aqueous solution. In this study, raw FA, acid-treated FA, and metal oxide (silver, iron, and aluminum) impregnated FA were assessed on a bench scale, for MTBE adsorption in contaminated water system and benchmarked against activated carbon (AC). Results showed that only silver oxide (Ag2O) impregnated FA achieved ~24% removal of MTBE from aqueous solution, while the other tested adsorbent materials achieved &lt;10%. MTBE optimum adsorption was attained after 120 min of contact, and 0.5 g/L dosage of adsorbent. Conversely, silver oxide impregnation of AC brought about a drop in its MTBE removal efficiency from an optimum efficiency of 71 to 53%. Also, the Langmuir isotherm model best represented the MTBE adsorption behavior of both the Ag2O-impregnated FA and AC, having R2 of 88.75–89.92%, respectively.</description><identifier>ISSN: 1944-3986</identifier><identifier>ISSN: 1944-3994</identifier><identifier>EISSN: 1944-3986</identifier><identifier>DOI: 10.1080/19443994.2016.1172985</identifier><language>eng</language><publisher>Abingdon: Elsevier Inc</publisher><subject>Activated carbon ; Adsorbents ; Adsorption ; Aluminum ; Efficiency ; Ethers ; Fly ash ; Metal oxides ; MTBE ; Optimum adsorption ; Remediation ; Silver ; Silver oxides ; Waste materials ; Wastes ; Water pollution</subject><ispartof>Desalination and water treatment, 2016-11, Vol.57 (54), p.26307-26312</ispartof><rights>2016 Elsevier Inc.</rights><rights>2016 Balaban Desalination Publications. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-20289139a7cb20891e081f436430ec82ccbc70603c9477d318d3787fb249d25e3</citedby><cites>FETCH-LOGICAL-c403t-20289139a7cb20891e081f436430ec82ccbc70603c9477d318d3787fb249d25e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1944398624043388$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3535,27903,27904,45759</link.rule.ids></links><search><creatorcontrib>Adebayo, S.B.</creatorcontrib><creatorcontrib>Tawabini, B.S.</creatorcontrib><creatorcontrib>Atieh, M.A.</creatorcontrib><creatorcontrib>Abuilaiwi, F.A.</creatorcontrib><creatorcontrib>Alfadul, S.</creatorcontrib><title>Investigating the removal of methyl tertiary butyl ether (MTBE) from water using raw and modified fly ash waste materials</title><title>Desalination and water treatment</title><description>Classical techniques for remediation of methyl tertiary butyl ether (MTBE) from contaminated water sources are characterized by inherent limitations due to its unique physical and chemical characteristics, making further remediation researches promising. Fly ash (FA), which is a waste material derived from the combustion of coal or heavy liquid fuel has been reported to show favorable adsorption results with selected metals, dyes, and some organics in aqueous solution. In this study, raw FA, acid-treated FA, and metal oxide (silver, iron, and aluminum) impregnated FA were assessed on a bench scale, for MTBE adsorption in contaminated water system and benchmarked against activated carbon (AC). Results showed that only silver oxide (Ag2O) impregnated FA achieved ~24% removal of MTBE from aqueous solution, while the other tested adsorbent materials achieved &lt;10%. MTBE optimum adsorption was attained after 120 min of contact, and 0.5 g/L dosage of adsorbent. Conversely, silver oxide impregnation of AC brought about a drop in its MTBE removal efficiency from an optimum efficiency of 71 to 53%. Also, the Langmuir isotherm model best represented the MTBE adsorption behavior of both the Ag2O-impregnated FA and AC, having R2 of 88.75–89.92%, respectively.</description><subject>Activated carbon</subject><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Aluminum</subject><subject>Efficiency</subject><subject>Ethers</subject><subject>Fly ash</subject><subject>Metal oxides</subject><subject>MTBE</subject><subject>Optimum adsorption</subject><subject>Remediation</subject><subject>Silver</subject><subject>Silver oxides</subject><subject>Waste materials</subject><subject>Wastes</subject><subject>Water pollution</subject><issn>1944-3986</issn><issn>1944-3994</issn><issn>1944-3986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhosoKOpPEAJe9LBrvtokJ1HxCxQv6zlk06kbaRtN0l3235uyK4gXnct88MwLM29RnBA8JVjiC6I4Z0rxKcWkmhIiqJLlTnEwzidMyWr3R71fHMf4jnOUXJScHhTrx34JMbk3k1z_htICUIDOL02LfIM6SIt1ixKE5ExYo_mQcpuHENDZ8-z69hw1wXdoZTKChjhKBLNCpq9R52vXOKhR066RiYsMxQSoG1Fn2nhU7DU5wfE2Hxavd7ezm4fJ08v9483V08RyzNKEYioVYcoIO6c4l4AlaTirOMNgJbV2bgWuMLOKC1EzImsmpGjmlKualsAOi7ON7kfwn0O-VXcuWmhb04MfoiYKc0pIJeV_UCIqShXP6Okv9N0Poc-HaCIZxhUntMxUuaFs8DEGaPRHcF3-pCZYj_bpb_v0aJ_e2pf3Ljd7kB-zdBB0tA56C7ULYJOuvftD4QuA_p8-</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Adebayo, S.B.</creator><creator>Tawabini, B.S.</creator><creator>Atieh, M.A.</creator><creator>Abuilaiwi, F.A.</creator><creator>Alfadul, S.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20161101</creationdate><title>Investigating the removal of methyl tertiary butyl ether (MTBE) from water using raw and modified fly ash waste materials</title><author>Adebayo, S.B. ; Tawabini, B.S. ; Atieh, M.A. ; Abuilaiwi, F.A. ; Alfadul, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-20289139a7cb20891e081f436430ec82ccbc70603c9477d318d3787fb249d25e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Activated carbon</topic><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Aluminum</topic><topic>Efficiency</topic><topic>Ethers</topic><topic>Fly ash</topic><topic>Metal oxides</topic><topic>MTBE</topic><topic>Optimum adsorption</topic><topic>Remediation</topic><topic>Silver</topic><topic>Silver oxides</topic><topic>Waste materials</topic><topic>Wastes</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adebayo, S.B.</creatorcontrib><creatorcontrib>Tawabini, B.S.</creatorcontrib><creatorcontrib>Atieh, M.A.</creatorcontrib><creatorcontrib>Abuilaiwi, F.A.</creatorcontrib><creatorcontrib>Alfadul, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Desalination and water treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adebayo, S.B.</au><au>Tawabini, B.S.</au><au>Atieh, M.A.</au><au>Abuilaiwi, F.A.</au><au>Alfadul, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the removal of methyl tertiary butyl ether (MTBE) from water using raw and modified fly ash waste materials</atitle><jtitle>Desalination and water treatment</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>57</volume><issue>54</issue><spage>26307</spage><epage>26312</epage><pages>26307-26312</pages><issn>1944-3986</issn><issn>1944-3994</issn><eissn>1944-3986</eissn><abstract>Classical techniques for remediation of methyl tertiary butyl ether (MTBE) from contaminated water sources are characterized by inherent limitations due to its unique physical and chemical characteristics, making further remediation researches promising. Fly ash (FA), which is a waste material derived from the combustion of coal or heavy liquid fuel has been reported to show favorable adsorption results with selected metals, dyes, and some organics in aqueous solution. In this study, raw FA, acid-treated FA, and metal oxide (silver, iron, and aluminum) impregnated FA were assessed on a bench scale, for MTBE adsorption in contaminated water system and benchmarked against activated carbon (AC). Results showed that only silver oxide (Ag2O) impregnated FA achieved ~24% removal of MTBE from aqueous solution, while the other tested adsorbent materials achieved &lt;10%. MTBE optimum adsorption was attained after 120 min of contact, and 0.5 g/L dosage of adsorbent. Conversely, silver oxide impregnation of AC brought about a drop in its MTBE removal efficiency from an optimum efficiency of 71 to 53%. Also, the Langmuir isotherm model best represented the MTBE adsorption behavior of both the Ag2O-impregnated FA and AC, having R2 of 88.75–89.92%, respectively.</abstract><cop>Abingdon</cop><pub>Elsevier Inc</pub><doi>10.1080/19443994.2016.1172985</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-3986
ispartof Desalination and water treatment, 2016-11, Vol.57 (54), p.26307-26312
issn 1944-3986
1944-3994
1944-3986
language eng
recordid cdi_proquest_miscellaneous_1904211688
source ScienceDirect
subjects Activated carbon
Adsorbents
Adsorption
Aluminum
Efficiency
Ethers
Fly ash
Metal oxides
MTBE
Optimum adsorption
Remediation
Silver
Silver oxides
Waste materials
Wastes
Water pollution
title Investigating the removal of methyl tertiary butyl ether (MTBE) from water using raw and modified fly ash waste materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20removal%20of%20methyl%20tertiary%20butyl%20ether%20(MTBE)%20from%20water%20using%20raw%20and%20modified%20fly%20ash%20waste%20materials&rft.jtitle=Desalination%20and%20water%20treatment&rft.au=Adebayo,%20S.B.&rft.date=2016-11-01&rft.volume=57&rft.issue=54&rft.spage=26307&rft.epage=26312&rft.pages=26307-26312&rft.issn=1944-3986&rft.eissn=1944-3986&rft_id=info:doi/10.1080/19443994.2016.1172985&rft_dat=%3Cproquest_cross%3E4219374401%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-20289139a7cb20891e081f436430ec82ccbc70603c9477d318d3787fb249d25e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1830064125&rft_id=info:pmid/&rfr_iscdi=true