Loading…
A New Bilayer Continuum Model Based on Gurtin-Murdoch and Consistent Couple-Stress Theories for Stability Analysis of Beam-Type Nanotweezers
Nano-scale beams might not be considered uniform isotropic since the energy of the surface layer and microstructure of the bulk part highly affect the mechanical characteristics of the beams. Herein, the impact of the energy of the surface layer and the microstructure of the bulk on the mechanical s...
Saved in:
Published in: | Journal of mechanics 2017-04, Vol.33 (2), p.137-146 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nano-scale beams might not be considered uniform isotropic since the energy of the surface layer and microstructure of the bulk part highly affect the mechanical characteristics of the beams. Herein, the impact of the energy of the surface layer and the microstructure of the bulk on the mechanical stability of beam-type nanotweezers are investigated. A new bilayer continuum model has been developed which incorporates the strain energy of the surface atoms as well as the microstructure-dependent strain energy of the bulk material. The recently-developed consistent couple stress elasticity (CCSE) in combination with the Gurtin-Murdoch surface theory is applied to derive the governing equation. The nonlinear governing equation was solved using numerical generalized differential quadrature (GDQ). Effects of various parameters including characteristics of the surface layer, microstructure of the bulk and external forces on the static and dynamic stability threshold of the nanostructure are demonstrated. |
---|---|
ISSN: | 1727-7191 1811-8216 |
DOI: | 10.1017/jmech.2016.45 |