Loading…
Facial Expression Recognition from Video Sequences Based on Spatial-Temporal Motion Local Binary Pattern and Gabor Multiorientation Fusion Histogram
This paper proposes novel framework for facial expressions analysis using dynamic and static information in video sequences. First, based on incremental formulation, discriminative deformable face alignment method is adapted to locate facial points to correct in-plane head rotation and break up faci...
Saved in:
Published in: | Mathematical problems in engineering 2017-01, Vol.2017 (2017), p.1-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes novel framework for facial expressions analysis using dynamic and static information in video sequences. First, based on incremental formulation, discriminative deformable face alignment method is adapted to locate facial points to correct in-plane head rotation and break up facial region from background. Then, spatial-temporal motion local binary pattern (LBP) feature is extracted and integrated with Gabor multiorientation fusion histogram to give descriptors, which reflect static and dynamic texture information of facial expressions. Finally, a one-versus-one strategy based multiclass support vector machine (SVM) classifier is applied to classify facial expressions. Experiments on Cohn-Kanade (CK) + facial expression dataset illustrate that integrated framework outperforms methods using single descriptors. Compared with other state-of-the-art methods on CK+, MMI, and Oulu-CASIA VIS datasets, our proposed framework performs better. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2017/7206041 |