Loading…

Fractional semilinear Neumann problems arising from a fractional Keller–Segel model

We consider the following fractional semilinear Neumann problem on a smooth bounded domain Ω ⊂ R n , n ≥ 2 , ( - ε Δ ) 1 / 2 u + u = u p , in Ω , ∂ ν u = 0 , on ∂ Ω , u > 0 , in Ω , where ε > 0 and 1 < p < ( n + 1 ) / ( n - 1 ) . This is the fractional version of the semilinear Neumann p...

Full description

Saved in:
Bibliographic Details
Published in:Calculus of variations and partial differential equations 2015-09, Vol.54 (1), p.1009-1042
Main Authors: Stinga, Pablo Raúl, Volzone, Bruno
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c391t-fe1e668abbfab255e085eb5ff15f7b85ee1f17f1975504ebca3d674d2147bdd83
cites cdi_FETCH-LOGICAL-c391t-fe1e668abbfab255e085eb5ff15f7b85ee1f17f1975504ebca3d674d2147bdd83
container_end_page 1042
container_issue 1
container_start_page 1009
container_title Calculus of variations and partial differential equations
container_volume 54
creator Stinga, Pablo Raúl
Volzone, Bruno
description We consider the following fractional semilinear Neumann problem on a smooth bounded domain Ω ⊂ R n , n ≥ 2 , ( - ε Δ ) 1 / 2 u + u = u p , in Ω , ∂ ν u = 0 , on ∂ Ω , u > 0 , in Ω , where ε > 0 and 1 < p < ( n + 1 ) / ( n - 1 ) . This is the fractional version of the semilinear Neumann problem studied by Lin–Ni–Takagi in the late 1980’s. The problem arises by considering steady states of the Keller–Segel model with nonlocal chemical concentration diffusion. Using the semigroup language for the extension method and variational techniques, we prove existence of nonconstant smooth solutions for small ε , which are obtained by minimizing a suitable energy functional. In the case of large ε we obtain nonexistence of nonconstant solutions. It is also shown that as ε → 0 the solutions u ε tend to zero in measure on Ω , while they form spikes in Ω ¯ . The regularity estimates of the fractional Neumann Laplacian that we develop here are essential for the analysis. The latter results are of independent interest.
doi_str_mv 10.1007/s00526-014-0815-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904221306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904221306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-fe1e668abbfab255e085eb5ff15f7b85ee1f17f1975504ebca3d674d2147bdd83</originalsourceid><addsrcrecordid>eNp9kD1OxDAQhS0EEsvCAehS0gRmHDs_JVrxJ1ZQALVlJ-MoKydZ7E1Bxx24ISfBqyBKqpmR3jfz5jF2jnCJAMVVAJA8TwFFCiXKtDpgCxQZj1MmD9kCKiFSnufVMTsJYQOAsuRiwd5uva533TholwTqO9cNpH3yRFOvhyHZ-tE46kOifRe6oU2sH_tEx_JHPZJz5L8_v16oJZf0Y0PulB1Z7QKd_dZlvHPzurpP1893D6vrdVpnFe5SS0h5XmpjrDZcSoJSkpHWorSFiT2hxcJiVUgJgkytsyYvRMNRFKZpymzJLua90ef7RGGn-i7U0ZAeaJyCwgoE55hBHqU4S2s_huDJqq3veu0_FILaR6jmCFWMUO0jVFVk-MyEqB1a8mozTj4-Hf6BfgASX3ZN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904221306</pqid></control><display><type>article</type><title>Fractional semilinear Neumann problems arising from a fractional Keller–Segel model</title><source>Springer Nature</source><creator>Stinga, Pablo Raúl ; Volzone, Bruno</creator><creatorcontrib>Stinga, Pablo Raúl ; Volzone, Bruno</creatorcontrib><description>We consider the following fractional semilinear Neumann problem on a smooth bounded domain Ω ⊂ R n , n ≥ 2 , ( - ε Δ ) 1 / 2 u + u = u p , in Ω , ∂ ν u = 0 , on ∂ Ω , u &gt; 0 , in Ω , where ε &gt; 0 and 1 &lt; p &lt; ( n + 1 ) / ( n - 1 ) . This is the fractional version of the semilinear Neumann problem studied by Lin–Ni–Takagi in the late 1980’s. The problem arises by considering steady states of the Keller–Segel model with nonlocal chemical concentration diffusion. Using the semigroup language for the extension method and variational techniques, we prove existence of nonconstant smooth solutions for small ε , which are obtained by minimizing a suitable energy functional. In the case of large ε we obtain nonexistence of nonconstant solutions. It is also shown that as ε → 0 the solutions u ε tend to zero in measure on Ω , while they form spikes in Ω ¯ . The regularity estimates of the fractional Neumann Laplacian that we develop here are essential for the analysis. The latter results are of independent interest.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-014-0815-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Diffusion ; Energy use ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Neumann problem ; Regularity ; Steady state ; Systems Theory ; Texts ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2015-09, Vol.54 (1), p.1009-1042</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-fe1e668abbfab255e085eb5ff15f7b85ee1f17f1975504ebca3d674d2147bdd83</citedby><cites>FETCH-LOGICAL-c391t-fe1e668abbfab255e085eb5ff15f7b85ee1f17f1975504ebca3d674d2147bdd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Stinga, Pablo Raúl</creatorcontrib><creatorcontrib>Volzone, Bruno</creatorcontrib><title>Fractional semilinear Neumann problems arising from a fractional Keller–Segel model</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We consider the following fractional semilinear Neumann problem on a smooth bounded domain Ω ⊂ R n , n ≥ 2 , ( - ε Δ ) 1 / 2 u + u = u p , in Ω , ∂ ν u = 0 , on ∂ Ω , u &gt; 0 , in Ω , where ε &gt; 0 and 1 &lt; p &lt; ( n + 1 ) / ( n - 1 ) . This is the fractional version of the semilinear Neumann problem studied by Lin–Ni–Takagi in the late 1980’s. The problem arises by considering steady states of the Keller–Segel model with nonlocal chemical concentration diffusion. Using the semigroup language for the extension method and variational techniques, we prove existence of nonconstant smooth solutions for small ε , which are obtained by minimizing a suitable energy functional. In the case of large ε we obtain nonexistence of nonconstant solutions. It is also shown that as ε → 0 the solutions u ε tend to zero in measure on Ω , while they form spikes in Ω ¯ . The regularity estimates of the fractional Neumann Laplacian that we develop here are essential for the analysis. The latter results are of independent interest.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Diffusion</subject><subject>Energy use</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Neumann problem</subject><subject>Regularity</subject><subject>Steady state</subject><subject>Systems Theory</subject><subject>Texts</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OxDAQhS0EEsvCAehS0gRmHDs_JVrxJ1ZQALVlJ-MoKydZ7E1Bxx24ISfBqyBKqpmR3jfz5jF2jnCJAMVVAJA8TwFFCiXKtDpgCxQZj1MmD9kCKiFSnufVMTsJYQOAsuRiwd5uva533TholwTqO9cNpH3yRFOvhyHZ-tE46kOifRe6oU2sH_tEx_JHPZJz5L8_v16oJZf0Y0PulB1Z7QKd_dZlvHPzurpP1893D6vrdVpnFe5SS0h5XmpjrDZcSoJSkpHWorSFiT2hxcJiVUgJgkytsyYvRMNRFKZpymzJLua90ef7RGGn-i7U0ZAeaJyCwgoE55hBHqU4S2s_huDJqq3veu0_FILaR6jmCFWMUO0jVFVk-MyEqB1a8mozTj4-Hf6BfgASX3ZN</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Stinga, Pablo Raúl</creator><creator>Volzone, Bruno</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150901</creationdate><title>Fractional semilinear Neumann problems arising from a fractional Keller–Segel model</title><author>Stinga, Pablo Raúl ; Volzone, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-fe1e668abbfab255e085eb5ff15f7b85ee1f17f1975504ebca3d674d2147bdd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Diffusion</topic><topic>Energy use</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Neumann problem</topic><topic>Regularity</topic><topic>Steady state</topic><topic>Systems Theory</topic><topic>Texts</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stinga, Pablo Raúl</creatorcontrib><creatorcontrib>Volzone, Bruno</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stinga, Pablo Raúl</au><au>Volzone, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional semilinear Neumann problems arising from a fractional Keller–Segel model</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>54</volume><issue>1</issue><spage>1009</spage><epage>1042</epage><pages>1009-1042</pages><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We consider the following fractional semilinear Neumann problem on a smooth bounded domain Ω ⊂ R n , n ≥ 2 , ( - ε Δ ) 1 / 2 u + u = u p , in Ω , ∂ ν u = 0 , on ∂ Ω , u &gt; 0 , in Ω , where ε &gt; 0 and 1 &lt; p &lt; ( n + 1 ) / ( n - 1 ) . This is the fractional version of the semilinear Neumann problem studied by Lin–Ni–Takagi in the late 1980’s. The problem arises by considering steady states of the Keller–Segel model with nonlocal chemical concentration diffusion. Using the semigroup language for the extension method and variational techniques, we prove existence of nonconstant smooth solutions for small ε , which are obtained by minimizing a suitable energy functional. In the case of large ε we obtain nonexistence of nonconstant solutions. It is also shown that as ε → 0 the solutions u ε tend to zero in measure on Ω , while they form spikes in Ω ¯ . The regularity estimates of the fractional Neumann Laplacian that we develop here are essential for the analysis. The latter results are of independent interest.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-014-0815-9</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2015-09, Vol.54 (1), p.1009-1042
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_miscellaneous_1904221306
source Springer Nature
subjects Analysis
Calculus of Variations and Optimal Control
Optimization
Control
Diffusion
Energy use
Mathematical analysis
Mathematical and Computational Physics
Mathematical models
Mathematics
Mathematics and Statistics
Neumann problem
Regularity
Steady state
Systems Theory
Texts
Theoretical
title Fractional semilinear Neumann problems arising from a fractional Keller–Segel model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A16%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20semilinear%20Neumann%20problems%20arising%20from%20a%20fractional%20Keller%E2%80%93Segel%20model&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Stinga,%20Pablo%20Ra%C3%BAl&rft.date=2015-09-01&rft.volume=54&rft.issue=1&rft.spage=1009&rft.epage=1042&rft.pages=1009-1042&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-014-0815-9&rft_dat=%3Cproquest_cross%3E1904221306%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-fe1e668abbfab255e085eb5ff15f7b85ee1f17f1975504ebca3d674d2147bdd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1904221306&rft_id=info:pmid/&rfr_iscdi=true