Loading…
Fractional semilinear Neumann problems arising from a fractional Keller–Segel model
We consider the following fractional semilinear Neumann problem on a smooth bounded domain Ω ⊂ R n , n ≥ 2 , ( - ε Δ ) 1 / 2 u + u = u p , in Ω , ∂ ν u = 0 , on ∂ Ω , u > 0 , in Ω , where ε > 0 and 1 < p < ( n + 1 ) / ( n - 1 ) . This is the fractional version of the semilinear Neumann p...
Saved in:
Published in: | Calculus of variations and partial differential equations 2015-09, Vol.54 (1), p.1009-1042 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c391t-fe1e668abbfab255e085eb5ff15f7b85ee1f17f1975504ebca3d674d2147bdd83 |
---|---|
cites | cdi_FETCH-LOGICAL-c391t-fe1e668abbfab255e085eb5ff15f7b85ee1f17f1975504ebca3d674d2147bdd83 |
container_end_page | 1042 |
container_issue | 1 |
container_start_page | 1009 |
container_title | Calculus of variations and partial differential equations |
container_volume | 54 |
creator | Stinga, Pablo Raúl Volzone, Bruno |
description | We consider the following fractional semilinear Neumann problem on a smooth bounded domain
Ω
⊂
R
n
,
n
≥
2
,
(
-
ε
Δ
)
1
/
2
u
+
u
=
u
p
,
in
Ω
,
∂
ν
u
=
0
,
on
∂
Ω
,
u
>
0
,
in
Ω
,
where
ε
>
0
and
1
<
p
<
(
n
+
1
)
/
(
n
-
1
)
. This is the fractional version of the semilinear Neumann problem studied by Lin–Ni–Takagi in the late 1980’s. The problem arises by considering steady states of the Keller–Segel model with nonlocal chemical concentration diffusion. Using the semigroup language for the extension method and variational techniques, we prove existence of nonconstant smooth solutions for small
ε
, which are obtained by minimizing a suitable energy functional. In the case of large
ε
we obtain nonexistence of nonconstant solutions. It is also shown that as
ε
→
0
the solutions
u
ε
tend to zero in measure on
Ω
, while they form spikes in
Ω
¯
. The regularity estimates of the fractional Neumann Laplacian that we develop here are essential for the analysis. The latter results are of independent interest. |
doi_str_mv | 10.1007/s00526-014-0815-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904221306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904221306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-fe1e668abbfab255e085eb5ff15f7b85ee1f17f1975504ebca3d674d2147bdd83</originalsourceid><addsrcrecordid>eNp9kD1OxDAQhS0EEsvCAehS0gRmHDs_JVrxJ1ZQALVlJ-MoKydZ7E1Bxx24ISfBqyBKqpmR3jfz5jF2jnCJAMVVAJA8TwFFCiXKtDpgCxQZj1MmD9kCKiFSnufVMTsJYQOAsuRiwd5uva533TholwTqO9cNpH3yRFOvhyHZ-tE46kOifRe6oU2sH_tEx_JHPZJz5L8_v16oJZf0Y0PulB1Z7QKd_dZlvHPzurpP1893D6vrdVpnFe5SS0h5XmpjrDZcSoJSkpHWorSFiT2hxcJiVUgJgkytsyYvRMNRFKZpymzJLua90ef7RGGn-i7U0ZAeaJyCwgoE55hBHqU4S2s_huDJqq3veu0_FILaR6jmCFWMUO0jVFVk-MyEqB1a8mozTj4-Hf6BfgASX3ZN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904221306</pqid></control><display><type>article</type><title>Fractional semilinear Neumann problems arising from a fractional Keller–Segel model</title><source>Springer Nature</source><creator>Stinga, Pablo Raúl ; Volzone, Bruno</creator><creatorcontrib>Stinga, Pablo Raúl ; Volzone, Bruno</creatorcontrib><description>We consider the following fractional semilinear Neumann problem on a smooth bounded domain
Ω
⊂
R
n
,
n
≥
2
,
(
-
ε
Δ
)
1
/
2
u
+
u
=
u
p
,
in
Ω
,
∂
ν
u
=
0
,
on
∂
Ω
,
u
>
0
,
in
Ω
,
where
ε
>
0
and
1
<
p
<
(
n
+
1
)
/
(
n
-
1
)
. This is the fractional version of the semilinear Neumann problem studied by Lin–Ni–Takagi in the late 1980’s. The problem arises by considering steady states of the Keller–Segel model with nonlocal chemical concentration diffusion. Using the semigroup language for the extension method and variational techniques, we prove existence of nonconstant smooth solutions for small
ε
, which are obtained by minimizing a suitable energy functional. In the case of large
ε
we obtain nonexistence of nonconstant solutions. It is also shown that as
ε
→
0
the solutions
u
ε
tend to zero in measure on
Ω
, while they form spikes in
Ω
¯
. The regularity estimates of the fractional Neumann Laplacian that we develop here are essential for the analysis. The latter results are of independent interest.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-014-0815-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Diffusion ; Energy use ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Neumann problem ; Regularity ; Steady state ; Systems Theory ; Texts ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2015-09, Vol.54 (1), p.1009-1042</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-fe1e668abbfab255e085eb5ff15f7b85ee1f17f1975504ebca3d674d2147bdd83</citedby><cites>FETCH-LOGICAL-c391t-fe1e668abbfab255e085eb5ff15f7b85ee1f17f1975504ebca3d674d2147bdd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Stinga, Pablo Raúl</creatorcontrib><creatorcontrib>Volzone, Bruno</creatorcontrib><title>Fractional semilinear Neumann problems arising from a fractional Keller–Segel model</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We consider the following fractional semilinear Neumann problem on a smooth bounded domain
Ω
⊂
R
n
,
n
≥
2
,
(
-
ε
Δ
)
1
/
2
u
+
u
=
u
p
,
in
Ω
,
∂
ν
u
=
0
,
on
∂
Ω
,
u
>
0
,
in
Ω
,
where
ε
>
0
and
1
<
p
<
(
n
+
1
)
/
(
n
-
1
)
. This is the fractional version of the semilinear Neumann problem studied by Lin–Ni–Takagi in the late 1980’s. The problem arises by considering steady states of the Keller–Segel model with nonlocal chemical concentration diffusion. Using the semigroup language for the extension method and variational techniques, we prove existence of nonconstant smooth solutions for small
ε
, which are obtained by minimizing a suitable energy functional. In the case of large
ε
we obtain nonexistence of nonconstant solutions. It is also shown that as
ε
→
0
the solutions
u
ε
tend to zero in measure on
Ω
, while they form spikes in
Ω
¯
. The regularity estimates of the fractional Neumann Laplacian that we develop here are essential for the analysis. The latter results are of independent interest.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Diffusion</subject><subject>Energy use</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Neumann problem</subject><subject>Regularity</subject><subject>Steady state</subject><subject>Systems Theory</subject><subject>Texts</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OxDAQhS0EEsvCAehS0gRmHDs_JVrxJ1ZQALVlJ-MoKydZ7E1Bxx24ISfBqyBKqpmR3jfz5jF2jnCJAMVVAJA8TwFFCiXKtDpgCxQZj1MmD9kCKiFSnufVMTsJYQOAsuRiwd5uva533TholwTqO9cNpH3yRFOvhyHZ-tE46kOifRe6oU2sH_tEx_JHPZJz5L8_v16oJZf0Y0PulB1Z7QKd_dZlvHPzurpP1893D6vrdVpnFe5SS0h5XmpjrDZcSoJSkpHWorSFiT2hxcJiVUgJgkytsyYvRMNRFKZpymzJLua90ef7RGGn-i7U0ZAeaJyCwgoE55hBHqU4S2s_huDJqq3veu0_FILaR6jmCFWMUO0jVFVk-MyEqB1a8mozTj4-Hf6BfgASX3ZN</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Stinga, Pablo Raúl</creator><creator>Volzone, Bruno</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150901</creationdate><title>Fractional semilinear Neumann problems arising from a fractional Keller–Segel model</title><author>Stinga, Pablo Raúl ; Volzone, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-fe1e668abbfab255e085eb5ff15f7b85ee1f17f1975504ebca3d674d2147bdd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Diffusion</topic><topic>Energy use</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Neumann problem</topic><topic>Regularity</topic><topic>Steady state</topic><topic>Systems Theory</topic><topic>Texts</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stinga, Pablo Raúl</creatorcontrib><creatorcontrib>Volzone, Bruno</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stinga, Pablo Raúl</au><au>Volzone, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional semilinear Neumann problems arising from a fractional Keller–Segel model</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>54</volume><issue>1</issue><spage>1009</spage><epage>1042</epage><pages>1009-1042</pages><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We consider the following fractional semilinear Neumann problem on a smooth bounded domain
Ω
⊂
R
n
,
n
≥
2
,
(
-
ε
Δ
)
1
/
2
u
+
u
=
u
p
,
in
Ω
,
∂
ν
u
=
0
,
on
∂
Ω
,
u
>
0
,
in
Ω
,
where
ε
>
0
and
1
<
p
<
(
n
+
1
)
/
(
n
-
1
)
. This is the fractional version of the semilinear Neumann problem studied by Lin–Ni–Takagi in the late 1980’s. The problem arises by considering steady states of the Keller–Segel model with nonlocal chemical concentration diffusion. Using the semigroup language for the extension method and variational techniques, we prove existence of nonconstant smooth solutions for small
ε
, which are obtained by minimizing a suitable energy functional. In the case of large
ε
we obtain nonexistence of nonconstant solutions. It is also shown that as
ε
→
0
the solutions
u
ε
tend to zero in measure on
Ω
, while they form spikes in
Ω
¯
. The regularity estimates of the fractional Neumann Laplacian that we develop here are essential for the analysis. The latter results are of independent interest.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-014-0815-9</doi><tpages>34</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2015-09, Vol.54 (1), p.1009-1042 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904221306 |
source | Springer Nature |
subjects | Analysis Calculus of Variations and Optimal Control Optimization Control Diffusion Energy use Mathematical analysis Mathematical and Computational Physics Mathematical models Mathematics Mathematics and Statistics Neumann problem Regularity Steady state Systems Theory Texts Theoretical |
title | Fractional semilinear Neumann problems arising from a fractional Keller–Segel model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A16%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20semilinear%20Neumann%20problems%20arising%20from%20a%20fractional%20Keller%E2%80%93Segel%20model&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Stinga,%20Pablo%20Ra%C3%BAl&rft.date=2015-09-01&rft.volume=54&rft.issue=1&rft.spage=1009&rft.epage=1042&rft.pages=1009-1042&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-014-0815-9&rft_dat=%3Cproquest_cross%3E1904221306%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-fe1e668abbfab255e085eb5ff15f7b85ee1f17f1975504ebca3d674d2147bdd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1904221306&rft_id=info:pmid/&rfr_iscdi=true |