Loading…
Label-Free Method Using a Weighted-Phase Algorithm To Quantitate Nanoscale Interactions between Molecules on DNA Microarrays
White light interference is used as a label-free method to detect nanoscale changes on surfaces. However, the signal-to-noise ratio of the white light interference method is very low, thus resulting in inaccurate results. In this paper, we report a corrected label-free method based on hyperspectral...
Saved in:
Published in: | Analytical chemistry (Washington) 2017-03, Vol.89 (6), p.3501-3507 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | White light interference is used as a label-free method to detect nanoscale changes on surfaces. However, the signal-to-noise ratio of the white light interference method is very low, thus resulting in inaccurate results. In this paper, we report a corrected label-free method based on hyperspectral interferometry to overcome the shortcoming of the white light interference method. A platform based on hyperspectral interferometry was established, and a DNA hybridization microarray was constructed to quantitate thickness variation of molecules on a solid surface. We used fluorescence resonance energy transfer (FRET) to validate the results of our method. Compared to conventional fluorescence-labeled method like FRET, our method has advantages because it does not require a fluorescent label and has a detection limit of 1.78 nm, a high accuracy, and wide detection range (5–64 bp). |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.6b04596 |