Loading…

High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes

Schottky heterojunctions based on graphene-silicon structures are promising for high-performance photodetectors. However, existing fabrication processes adopt transferred graphene as electrodes, limiting process compatibility and generating pollution because of the metal catalyst. In this report, ph...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2017-05, Vol.9 (18), p.6020-6025
Main Authors: Shen, Jun, Liu, Xiangzhi, Song, Xuefen, Li, Xinming, Wang, Jun, Zhou, Quan, Luo, Shi, Feng, Wenlin, Wei, Xingzhan, Lu, Shirong, Feng, Shuanglong, Du, Chunlei, Wang, Yuefeng, Shi, Haofei, Wei, Dapeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Schottky heterojunctions based on graphene-silicon structures are promising for high-performance photodetectors. However, existing fabrication processes adopt transferred graphene as electrodes, limiting process compatibility and generating pollution because of the metal catalyst. In this report, photodetectors are fabricated using directly grown graphene nanowalls (GNWs) as electrodes. Due to the metal-free growth process, GNWs-Si heterojunctions with an ultralow measured current noise of 3.1 fA Hz are obtained, and the as-prepared photodetectors demonstrate specific detectivities of 5.88 × 10 cm Hz W and 2.27 × 10 cm Hz W based on the measured and calculated noise current, respectively, under ambient conditions. These are among the highest reported values for planar silicon Schottky photodetectors. In addition, an on/off ratio of 2 × 10 , time response of 40 μs, cut-off frequency of 8.5 kHz and responsivity of 0.52 A W are simultaneously realized. The ultralow current noise is attributed to the excellent junction quality with a barrier height of 0.69 eV and an ideal factor of 1.18. Furthermore, obvious infrared photoresponse is observed in blackbody tests, and potential applications based on the photo-thermionic effect are discussed.
ISSN:2040-3364
2040-3372
DOI:10.1039/c7nr00573c