Loading…

Characterizing quantum channels with non-separable states of classical light

High-dimensional entanglement with spatial modes of light promises increased security and information capacity over quantum channels. Unfortunately, entanglement decays due to perturbations, corrupting quantum links that cannot be repaired without performing quantum tomography on the channel. Parado...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2017-04, Vol.13 (4), p.397-402
Main Authors: Ndagano, Bienvenu, Perez-Garcia, Benjamin, Roux, Filippus S., McLaren, Melanie, Rosales-Guzman, Carmelo, Zhang, Yingwen, Mouane, Othmane, Hernandez-Aranda, Raul I., Konrad, Thomas, Forbes, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-e355bfe2a07f3691338b8c3ec049f350a03c28a62cac8911cac2d8e1b0aae70c3
cites cdi_FETCH-LOGICAL-c325t-e355bfe2a07f3691338b8c3ec049f350a03c28a62cac8911cac2d8e1b0aae70c3
container_end_page 402
container_issue 4
container_start_page 397
container_title Nature physics
container_volume 13
creator Ndagano, Bienvenu
Perez-Garcia, Benjamin
Roux, Filippus S.
McLaren, Melanie
Rosales-Guzman, Carmelo
Zhang, Yingwen
Mouane, Othmane
Hernandez-Aranda, Raul I.
Konrad, Thomas
Forbes, Andrew
description High-dimensional entanglement with spatial modes of light promises increased security and information capacity over quantum channels. Unfortunately, entanglement decays due to perturbations, corrupting quantum links that cannot be repaired without performing quantum tomography on the channel. Paradoxically, the channel tomography itself is not possible without a working link. Here we overcome this problem with a robust approach to characterize quantum channels by means of classical light. Using free-space communication in a turbulent atmosphere as an example, we show that the state evolution of classically entangled degrees of freedom is equivalent to that of quantum entangled photons, thus providing new physical insights into the notion of classical entanglement. The analysis of quantum channels by means of classical light in real time unravels stochastic dynamics in terms of pure state trajectories, and thus enables precise quantum error correction in short- and long-haul optical communication, in both free space and fibre. Classical light is as good as quantum light to characterize a quantum channel. This unexpected result has practical consequences that make an experimentalist’s life easier in some situations.
doi_str_mv 10.1038/nphys4003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904234846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904234846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-e355bfe2a07f3691338b8c3ec049f350a03c28a62cac8911cac2d8e1b0aae70c3</originalsourceid><addsrcrecordid>eNpl0E1Lw0AQBuBFFKzVg_9gwYsK0f1KsjlK8QsKXvQcNuukSdlu2p0NUn-9K5Uiepo5PLzMvIScc3bDmdS3ft1tUTEmD8iElyrPhNL8cL-X8picIC4ZU6LgckLms84EYyOE_rP3C7oZjY_jitrOeA8O6UcfO-oHnyGsk2wcUIwmAtKhpdYZxN4aR12_6OIpOWqNQzj7mVPy9nD_OnvK5i-Pz7O7eWalyGMGMs-bFoRhZSuLikupG20lWKaqVubMMGmFNoWwxuqK8zTEuwbeMGOgZFZOyeUudx2GzQgY61WPFpwzHoYRa16l96TSqkj04g9dDmPw6bqaa62E0KIqk7raKRsGxABtvQ79yoRtzVn93Wu97zXZ653FZPwCwq_Ef_gLsN56jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884228297</pqid></control><display><type>article</type><title>Characterizing quantum channels with non-separable states of classical light</title><source>Nature Journals Online</source><creator>Ndagano, Bienvenu ; Perez-Garcia, Benjamin ; Roux, Filippus S. ; McLaren, Melanie ; Rosales-Guzman, Carmelo ; Zhang, Yingwen ; Mouane, Othmane ; Hernandez-Aranda, Raul I. ; Konrad, Thomas ; Forbes, Andrew</creator><creatorcontrib>Ndagano, Bienvenu ; Perez-Garcia, Benjamin ; Roux, Filippus S. ; McLaren, Melanie ; Rosales-Guzman, Carmelo ; Zhang, Yingwen ; Mouane, Othmane ; Hernandez-Aranda, Raul I. ; Konrad, Thomas ; Forbes, Andrew</creatorcontrib><description>High-dimensional entanglement with spatial modes of light promises increased security and information capacity over quantum channels. Unfortunately, entanglement decays due to perturbations, corrupting quantum links that cannot be repaired without performing quantum tomography on the channel. Paradoxically, the channel tomography itself is not possible without a working link. Here we overcome this problem with a robust approach to characterize quantum channels by means of classical light. Using free-space communication in a turbulent atmosphere as an example, we show that the state evolution of classically entangled degrees of freedom is equivalent to that of quantum entangled photons, thus providing new physical insights into the notion of classical entanglement. The analysis of quantum channels by means of classical light in real time unravels stochastic dynamics in terms of pure state trajectories, and thus enables precise quantum error correction in short- and long-haul optical communication, in both free space and fibre. Classical light is as good as quantum light to characterize a quantum channel. This unexpected result has practical consequences that make an experimentalist’s life easier in some situations.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys4003</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/400/3925 ; 639/766/483/1139 ; Atmosphere ; Atomic ; Channels ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Decay ; Entanglement ; Links ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Optics ; Photons ; Physics ; Quantum physics ; Theoretical ; Tomography ; Trajectories ; Turbulent flow</subject><ispartof>Nature physics, 2017-04, Vol.13 (4), p.397-402</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Apr 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-e355bfe2a07f3691338b8c3ec049f350a03c28a62cac8911cac2d8e1b0aae70c3</citedby><cites>FETCH-LOGICAL-c325t-e355bfe2a07f3691338b8c3ec049f350a03c28a62cac8911cac2d8e1b0aae70c3</cites><orcidid>0000-0001-9624-4189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ndagano, Bienvenu</creatorcontrib><creatorcontrib>Perez-Garcia, Benjamin</creatorcontrib><creatorcontrib>Roux, Filippus S.</creatorcontrib><creatorcontrib>McLaren, Melanie</creatorcontrib><creatorcontrib>Rosales-Guzman, Carmelo</creatorcontrib><creatorcontrib>Zhang, Yingwen</creatorcontrib><creatorcontrib>Mouane, Othmane</creatorcontrib><creatorcontrib>Hernandez-Aranda, Raul I.</creatorcontrib><creatorcontrib>Konrad, Thomas</creatorcontrib><creatorcontrib>Forbes, Andrew</creatorcontrib><title>Characterizing quantum channels with non-separable states of classical light</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>High-dimensional entanglement with spatial modes of light promises increased security and information capacity over quantum channels. Unfortunately, entanglement decays due to perturbations, corrupting quantum links that cannot be repaired without performing quantum tomography on the channel. Paradoxically, the channel tomography itself is not possible without a working link. Here we overcome this problem with a robust approach to characterize quantum channels by means of classical light. Using free-space communication in a turbulent atmosphere as an example, we show that the state evolution of classically entangled degrees of freedom is equivalent to that of quantum entangled photons, thus providing new physical insights into the notion of classical entanglement. The analysis of quantum channels by means of classical light in real time unravels stochastic dynamics in terms of pure state trajectories, and thus enables precise quantum error correction in short- and long-haul optical communication, in both free space and fibre. Classical light is as good as quantum light to characterize a quantum channel. This unexpected result has practical consequences that make an experimentalist’s life easier in some situations.</description><subject>639/624/400/3925</subject><subject>639/766/483/1139</subject><subject>Atmosphere</subject><subject>Atomic</subject><subject>Channels</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Decay</subject><subject>Entanglement</subject><subject>Links</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optics</subject><subject>Photons</subject><subject>Physics</subject><subject>Quantum physics</subject><subject>Theoretical</subject><subject>Tomography</subject><subject>Trajectories</subject><subject>Turbulent flow</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpl0E1Lw0AQBuBFFKzVg_9gwYsK0f1KsjlK8QsKXvQcNuukSdlu2p0NUn-9K5Uiepo5PLzMvIScc3bDmdS3ft1tUTEmD8iElyrPhNL8cL-X8picIC4ZU6LgckLms84EYyOE_rP3C7oZjY_jitrOeA8O6UcfO-oHnyGsk2wcUIwmAtKhpdYZxN4aR12_6OIpOWqNQzj7mVPy9nD_OnvK5i-Pz7O7eWalyGMGMs-bFoRhZSuLikupG20lWKaqVubMMGmFNoWwxuqK8zTEuwbeMGOgZFZOyeUudx2GzQgY61WPFpwzHoYRa16l96TSqkj04g9dDmPw6bqaa62E0KIqk7raKRsGxABtvQ79yoRtzVn93Wu97zXZ653FZPwCwq_Ef_gLsN56jg</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Ndagano, Bienvenu</creator><creator>Perez-Garcia, Benjamin</creator><creator>Roux, Filippus S.</creator><creator>McLaren, Melanie</creator><creator>Rosales-Guzman, Carmelo</creator><creator>Zhang, Yingwen</creator><creator>Mouane, Othmane</creator><creator>Hernandez-Aranda, Raul I.</creator><creator>Konrad, Thomas</creator><creator>Forbes, Andrew</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9624-4189</orcidid></search><sort><creationdate>20170401</creationdate><title>Characterizing quantum channels with non-separable states of classical light</title><author>Ndagano, Bienvenu ; Perez-Garcia, Benjamin ; Roux, Filippus S. ; McLaren, Melanie ; Rosales-Guzman, Carmelo ; Zhang, Yingwen ; Mouane, Othmane ; Hernandez-Aranda, Raul I. ; Konrad, Thomas ; Forbes, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-e355bfe2a07f3691338b8c3ec049f350a03c28a62cac8911cac2d8e1b0aae70c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/624/400/3925</topic><topic>639/766/483/1139</topic><topic>Atmosphere</topic><topic>Atomic</topic><topic>Channels</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Decay</topic><topic>Entanglement</topic><topic>Links</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optics</topic><topic>Photons</topic><topic>Physics</topic><topic>Quantum physics</topic><topic>Theoretical</topic><topic>Tomography</topic><topic>Trajectories</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ndagano, Bienvenu</creatorcontrib><creatorcontrib>Perez-Garcia, Benjamin</creatorcontrib><creatorcontrib>Roux, Filippus S.</creatorcontrib><creatorcontrib>McLaren, Melanie</creatorcontrib><creatorcontrib>Rosales-Guzman, Carmelo</creatorcontrib><creatorcontrib>Zhang, Yingwen</creatorcontrib><creatorcontrib>Mouane, Othmane</creatorcontrib><creatorcontrib>Hernandez-Aranda, Raul I.</creatorcontrib><creatorcontrib>Konrad, Thomas</creatorcontrib><creatorcontrib>Forbes, Andrew</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ndagano, Bienvenu</au><au>Perez-Garcia, Benjamin</au><au>Roux, Filippus S.</au><au>McLaren, Melanie</au><au>Rosales-Guzman, Carmelo</au><au>Zhang, Yingwen</au><au>Mouane, Othmane</au><au>Hernandez-Aranda, Raul I.</au><au>Konrad, Thomas</au><au>Forbes, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing quantum channels with non-separable states of classical light</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>13</volume><issue>4</issue><spage>397</spage><epage>402</epage><pages>397-402</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>High-dimensional entanglement with spatial modes of light promises increased security and information capacity over quantum channels. Unfortunately, entanglement decays due to perturbations, corrupting quantum links that cannot be repaired without performing quantum tomography on the channel. Paradoxically, the channel tomography itself is not possible without a working link. Here we overcome this problem with a robust approach to characterize quantum channels by means of classical light. Using free-space communication in a turbulent atmosphere as an example, we show that the state evolution of classically entangled degrees of freedom is equivalent to that of quantum entangled photons, thus providing new physical insights into the notion of classical entanglement. The analysis of quantum channels by means of classical light in real time unravels stochastic dynamics in terms of pure state trajectories, and thus enables precise quantum error correction in short- and long-haul optical communication, in both free space and fibre. Classical light is as good as quantum light to characterize a quantum channel. This unexpected result has practical consequences that make an experimentalist’s life easier in some situations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys4003</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9624-4189</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2017-04, Vol.13 (4), p.397-402
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_1904234846
source Nature Journals Online
subjects 639/624/400/3925
639/766/483/1139
Atmosphere
Atomic
Channels
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Decay
Entanglement
Links
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Optics
Photons
Physics
Quantum physics
Theoretical
Tomography
Trajectories
Turbulent flow
title Characterizing quantum channels with non-separable states of classical light
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20quantum%20channels%20with%20non-separable%20states%20of%20classical%20light&rft.jtitle=Nature%20physics&rft.au=Ndagano,%20Bienvenu&rft.date=2017-04-01&rft.volume=13&rft.issue=4&rft.spage=397&rft.epage=402&rft.pages=397-402&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys4003&rft_dat=%3Cproquest_cross%3E1904234846%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-e355bfe2a07f3691338b8c3ec049f350a03c28a62cac8911cac2d8e1b0aae70c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1884228297&rft_id=info:pmid/&rfr_iscdi=true