Loading…
Characterizing quantum channels with non-separable states of classical light
High-dimensional entanglement with spatial modes of light promises increased security and information capacity over quantum channels. Unfortunately, entanglement decays due to perturbations, corrupting quantum links that cannot be repaired without performing quantum tomography on the channel. Parado...
Saved in:
Published in: | Nature physics 2017-04, Vol.13 (4), p.397-402 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-e355bfe2a07f3691338b8c3ec049f350a03c28a62cac8911cac2d8e1b0aae70c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-e355bfe2a07f3691338b8c3ec049f350a03c28a62cac8911cac2d8e1b0aae70c3 |
container_end_page | 402 |
container_issue | 4 |
container_start_page | 397 |
container_title | Nature physics |
container_volume | 13 |
creator | Ndagano, Bienvenu Perez-Garcia, Benjamin Roux, Filippus S. McLaren, Melanie Rosales-Guzman, Carmelo Zhang, Yingwen Mouane, Othmane Hernandez-Aranda, Raul I. Konrad, Thomas Forbes, Andrew |
description | High-dimensional entanglement with spatial modes of light promises increased security and information capacity over quantum channels. Unfortunately, entanglement decays due to perturbations, corrupting quantum links that cannot be repaired without performing quantum tomography on the channel. Paradoxically, the channel tomography itself is not possible without a working link. Here we overcome this problem with a robust approach to characterize quantum channels by means of classical light. Using free-space communication in a turbulent atmosphere as an example, we show that the state evolution of classically entangled degrees of freedom is equivalent to that of quantum entangled photons, thus providing new physical insights into the notion of classical entanglement. The analysis of quantum channels by means of classical light in real time unravels stochastic dynamics in terms of pure state trajectories, and thus enables precise quantum error correction in short- and long-haul optical communication, in both free space and fibre.
Classical light is as good as quantum light to characterize a quantum channel. This unexpected result has practical consequences that make an experimentalist’s life easier in some situations. |
doi_str_mv | 10.1038/nphys4003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904234846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904234846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-e355bfe2a07f3691338b8c3ec049f350a03c28a62cac8911cac2d8e1b0aae70c3</originalsourceid><addsrcrecordid>eNpl0E1Lw0AQBuBFFKzVg_9gwYsK0f1KsjlK8QsKXvQcNuukSdlu2p0NUn-9K5Uiepo5PLzMvIScc3bDmdS3ft1tUTEmD8iElyrPhNL8cL-X8picIC4ZU6LgckLms84EYyOE_rP3C7oZjY_jitrOeA8O6UcfO-oHnyGsk2wcUIwmAtKhpdYZxN4aR12_6OIpOWqNQzj7mVPy9nD_OnvK5i-Pz7O7eWalyGMGMs-bFoRhZSuLikupG20lWKaqVubMMGmFNoWwxuqK8zTEuwbeMGOgZFZOyeUudx2GzQgY61WPFpwzHoYRa16l96TSqkj04g9dDmPw6bqaa62E0KIqk7raKRsGxABtvQ79yoRtzVn93Wu97zXZ653FZPwCwq_Ef_gLsN56jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884228297</pqid></control><display><type>article</type><title>Characterizing quantum channels with non-separable states of classical light</title><source>Nature Journals Online</source><creator>Ndagano, Bienvenu ; Perez-Garcia, Benjamin ; Roux, Filippus S. ; McLaren, Melanie ; Rosales-Guzman, Carmelo ; Zhang, Yingwen ; Mouane, Othmane ; Hernandez-Aranda, Raul I. ; Konrad, Thomas ; Forbes, Andrew</creator><creatorcontrib>Ndagano, Bienvenu ; Perez-Garcia, Benjamin ; Roux, Filippus S. ; McLaren, Melanie ; Rosales-Guzman, Carmelo ; Zhang, Yingwen ; Mouane, Othmane ; Hernandez-Aranda, Raul I. ; Konrad, Thomas ; Forbes, Andrew</creatorcontrib><description>High-dimensional entanglement with spatial modes of light promises increased security and information capacity over quantum channels. Unfortunately, entanglement decays due to perturbations, corrupting quantum links that cannot be repaired without performing quantum tomography on the channel. Paradoxically, the channel tomography itself is not possible without a working link. Here we overcome this problem with a robust approach to characterize quantum channels by means of classical light. Using free-space communication in a turbulent atmosphere as an example, we show that the state evolution of classically entangled degrees of freedom is equivalent to that of quantum entangled photons, thus providing new physical insights into the notion of classical entanglement. The analysis of quantum channels by means of classical light in real time unravels stochastic dynamics in terms of pure state trajectories, and thus enables precise quantum error correction in short- and long-haul optical communication, in both free space and fibre.
Classical light is as good as quantum light to characterize a quantum channel. This unexpected result has practical consequences that make an experimentalist’s life easier in some situations.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys4003</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/400/3925 ; 639/766/483/1139 ; Atmosphere ; Atomic ; Channels ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Decay ; Entanglement ; Links ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Optics ; Photons ; Physics ; Quantum physics ; Theoretical ; Tomography ; Trajectories ; Turbulent flow</subject><ispartof>Nature physics, 2017-04, Vol.13 (4), p.397-402</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Apr 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-e355bfe2a07f3691338b8c3ec049f350a03c28a62cac8911cac2d8e1b0aae70c3</citedby><cites>FETCH-LOGICAL-c325t-e355bfe2a07f3691338b8c3ec049f350a03c28a62cac8911cac2d8e1b0aae70c3</cites><orcidid>0000-0001-9624-4189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ndagano, Bienvenu</creatorcontrib><creatorcontrib>Perez-Garcia, Benjamin</creatorcontrib><creatorcontrib>Roux, Filippus S.</creatorcontrib><creatorcontrib>McLaren, Melanie</creatorcontrib><creatorcontrib>Rosales-Guzman, Carmelo</creatorcontrib><creatorcontrib>Zhang, Yingwen</creatorcontrib><creatorcontrib>Mouane, Othmane</creatorcontrib><creatorcontrib>Hernandez-Aranda, Raul I.</creatorcontrib><creatorcontrib>Konrad, Thomas</creatorcontrib><creatorcontrib>Forbes, Andrew</creatorcontrib><title>Characterizing quantum channels with non-separable states of classical light</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>High-dimensional entanglement with spatial modes of light promises increased security and information capacity over quantum channels. Unfortunately, entanglement decays due to perturbations, corrupting quantum links that cannot be repaired without performing quantum tomography on the channel. Paradoxically, the channel tomography itself is not possible without a working link. Here we overcome this problem with a robust approach to characterize quantum channels by means of classical light. Using free-space communication in a turbulent atmosphere as an example, we show that the state evolution of classically entangled degrees of freedom is equivalent to that of quantum entangled photons, thus providing new physical insights into the notion of classical entanglement. The analysis of quantum channels by means of classical light in real time unravels stochastic dynamics in terms of pure state trajectories, and thus enables precise quantum error correction in short- and long-haul optical communication, in both free space and fibre.
Classical light is as good as quantum light to characterize a quantum channel. This unexpected result has practical consequences that make an experimentalist’s life easier in some situations.</description><subject>639/624/400/3925</subject><subject>639/766/483/1139</subject><subject>Atmosphere</subject><subject>Atomic</subject><subject>Channels</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Decay</subject><subject>Entanglement</subject><subject>Links</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optics</subject><subject>Photons</subject><subject>Physics</subject><subject>Quantum physics</subject><subject>Theoretical</subject><subject>Tomography</subject><subject>Trajectories</subject><subject>Turbulent flow</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpl0E1Lw0AQBuBFFKzVg_9gwYsK0f1KsjlK8QsKXvQcNuukSdlu2p0NUn-9K5Uiepo5PLzMvIScc3bDmdS3ft1tUTEmD8iElyrPhNL8cL-X8picIC4ZU6LgckLms84EYyOE_rP3C7oZjY_jitrOeA8O6UcfO-oHnyGsk2wcUIwmAtKhpdYZxN4aR12_6OIpOWqNQzj7mVPy9nD_OnvK5i-Pz7O7eWalyGMGMs-bFoRhZSuLikupG20lWKaqVubMMGmFNoWwxuqK8zTEuwbeMGOgZFZOyeUudx2GzQgY61WPFpwzHoYRa16l96TSqkj04g9dDmPw6bqaa62E0KIqk7raKRsGxABtvQ79yoRtzVn93Wu97zXZ653FZPwCwq_Ef_gLsN56jg</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Ndagano, Bienvenu</creator><creator>Perez-Garcia, Benjamin</creator><creator>Roux, Filippus S.</creator><creator>McLaren, Melanie</creator><creator>Rosales-Guzman, Carmelo</creator><creator>Zhang, Yingwen</creator><creator>Mouane, Othmane</creator><creator>Hernandez-Aranda, Raul I.</creator><creator>Konrad, Thomas</creator><creator>Forbes, Andrew</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9624-4189</orcidid></search><sort><creationdate>20170401</creationdate><title>Characterizing quantum channels with non-separable states of classical light</title><author>Ndagano, Bienvenu ; Perez-Garcia, Benjamin ; Roux, Filippus S. ; McLaren, Melanie ; Rosales-Guzman, Carmelo ; Zhang, Yingwen ; Mouane, Othmane ; Hernandez-Aranda, Raul I. ; Konrad, Thomas ; Forbes, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-e355bfe2a07f3691338b8c3ec049f350a03c28a62cac8911cac2d8e1b0aae70c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/624/400/3925</topic><topic>639/766/483/1139</topic><topic>Atmosphere</topic><topic>Atomic</topic><topic>Channels</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Decay</topic><topic>Entanglement</topic><topic>Links</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optics</topic><topic>Photons</topic><topic>Physics</topic><topic>Quantum physics</topic><topic>Theoretical</topic><topic>Tomography</topic><topic>Trajectories</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ndagano, Bienvenu</creatorcontrib><creatorcontrib>Perez-Garcia, Benjamin</creatorcontrib><creatorcontrib>Roux, Filippus S.</creatorcontrib><creatorcontrib>McLaren, Melanie</creatorcontrib><creatorcontrib>Rosales-Guzman, Carmelo</creatorcontrib><creatorcontrib>Zhang, Yingwen</creatorcontrib><creatorcontrib>Mouane, Othmane</creatorcontrib><creatorcontrib>Hernandez-Aranda, Raul I.</creatorcontrib><creatorcontrib>Konrad, Thomas</creatorcontrib><creatorcontrib>Forbes, Andrew</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ndagano, Bienvenu</au><au>Perez-Garcia, Benjamin</au><au>Roux, Filippus S.</au><au>McLaren, Melanie</au><au>Rosales-Guzman, Carmelo</au><au>Zhang, Yingwen</au><au>Mouane, Othmane</au><au>Hernandez-Aranda, Raul I.</au><au>Konrad, Thomas</au><au>Forbes, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing quantum channels with non-separable states of classical light</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>13</volume><issue>4</issue><spage>397</spage><epage>402</epage><pages>397-402</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>High-dimensional entanglement with spatial modes of light promises increased security and information capacity over quantum channels. Unfortunately, entanglement decays due to perturbations, corrupting quantum links that cannot be repaired without performing quantum tomography on the channel. Paradoxically, the channel tomography itself is not possible without a working link. Here we overcome this problem with a robust approach to characterize quantum channels by means of classical light. Using free-space communication in a turbulent atmosphere as an example, we show that the state evolution of classically entangled degrees of freedom is equivalent to that of quantum entangled photons, thus providing new physical insights into the notion of classical entanglement. The analysis of quantum channels by means of classical light in real time unravels stochastic dynamics in terms of pure state trajectories, and thus enables precise quantum error correction in short- and long-haul optical communication, in both free space and fibre.
Classical light is as good as quantum light to characterize a quantum channel. This unexpected result has practical consequences that make an experimentalist’s life easier in some situations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys4003</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9624-4189</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2017-04, Vol.13 (4), p.397-402 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904234846 |
source | Nature Journals Online |
subjects | 639/624/400/3925 639/766/483/1139 Atmosphere Atomic Channels Classical and Continuum Physics Complex Systems Condensed Matter Physics Decay Entanglement Links Mathematical and Computational Physics Molecular Optical and Plasma Physics Optics Photons Physics Quantum physics Theoretical Tomography Trajectories Turbulent flow |
title | Characterizing quantum channels with non-separable states of classical light |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20quantum%20channels%20with%20non-separable%20states%20of%20classical%20light&rft.jtitle=Nature%20physics&rft.au=Ndagano,%20Bienvenu&rft.date=2017-04-01&rft.volume=13&rft.issue=4&rft.spage=397&rft.epage=402&rft.pages=397-402&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys4003&rft_dat=%3Cproquest_cross%3E1904234846%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-e355bfe2a07f3691338b8c3ec049f350a03c28a62cac8911cac2d8e1b0aae70c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1884228297&rft_id=info:pmid/&rfr_iscdi=true |