Loading…

Megasupramolecules for safer, cleaner fuel by end association of long telechelic polymers

We used statistical mechanics to design polymers that defy conventional wisdom by self-assembling into "megasupramolecules" (≥5000 kg/mol) at low concentration (≤0.3 weight percent). Theoretical treatment of the distribution of individual subunits–end-functional polymers–among cyclic and l...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2015-10, Vol.350 (6256), p.72-75
Main Authors: Wei, Ming-Hsin, Li, Boyu, David, R. L. Ameri, Jones, Simon C., Sarohia, Virendra, Schmitigal, Joel A., Kornfield, Julia A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We used statistical mechanics to design polymers that defy conventional wisdom by self-assembling into "megasupramolecules" (≥5000 kg/mol) at low concentration (≤0.3 weight percent). Theoretical treatment of the distribution of individual subunits–end-functional polymers–among cyclic and linear supramolecules (ring-chain equilibrium) predicts that megasupramolecules can form at low total polymer concentration if, and only if, the backbones are long (>400 kg/mol) and end-association strength is optimal. Viscometry and scattering measurements of long telechelic polymers having polycyclooctadiene backbones and acid or amine end groups verify the formation of megasupramolecules. They control misting and reduce drag in the same manner as ultralong covalent polymers. With individual building blocks short enough to avoid hydrodynamic chain scission (weight-average molecular weights of 400 to 1000 kg/mol) and reversible linkages that protect covalent bonds, these megasupramolecules overcome the obstacles of shear degradation and engine incompatibility.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.aab0642