Loading…
Supersnowflakes: Stepwise Self-Assembly and Dynamic Exchange of Rhombus Star-Shaped Supramolecules
With the goal of increasing the complexity of metallo-supramolecules, two rhombus star-shaped supramolecular architectures, namely, supersnowflakes, were designed and assembled using multiple 2,2′:6′,2″-terpyridine (tpy) ligands in a stepwise manner. In the design of multicomponent self-assembly, di...
Saved in:
Published in: | Journal of the American Chemical Society 2017-06, Vol.139 (24), p.8174-8185 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the goal of increasing the complexity of metallo-supramolecules, two rhombus star-shaped supramolecular architectures, namely, supersnowflakes, were designed and assembled using multiple 2,2′:6′,2″-terpyridine (tpy) ligands in a stepwise manner. In the design of multicomponent self-assembly, ditopic and tritopic ligands were bridged through Ru(II) with strong coordination to form metal–organic ligands for the subsequent self-assembly with a hexatopic ligand and Zn(II). The combination of Ru(II)–organic ligands with high stability and Zn(II) ions with weak coordination played a key role in the self-assembly of giant heteroleptic supersnowflakes, which encompassed three types of tpy-based organic ligands and two metal ions. With such a stepwise strategy, the self-sorting of individual building blocks was prevented from forming the undesired assemblies, e.g., small macrocycles and coordination polymers. Furthermore, the intra- and intermolecular dynamic exchange study of two supersnowflakes by NMR and mass spectrometry revealed the remarkable stability of these giant supramolecular complexes. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.7b01326 |