Loading…
Non‐integer surgery and branched double covers of alternating knots
We show that if the branched double cover of an alternating link arises as non‐integer surgery on a knot in S3, then this is exhibited by a rational tangle replacement in an alternating diagram.
Saved in:
Published in: | Journal of the London Mathematical Society 2015-10, Vol.92 (2), p.311-337 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3081-ebbfbe20d6d6f54adf87b8b70cbc6ef5324895f197e0bceaa3608e11ba8acb693 |
---|---|
cites | cdi_FETCH-LOGICAL-c3081-ebbfbe20d6d6f54adf87b8b70cbc6ef5324895f197e0bceaa3608e11ba8acb693 |
container_end_page | 337 |
container_issue | 2 |
container_start_page | 311 |
container_title | Journal of the London Mathematical Society |
container_volume | 92 |
creator | McCoy, Duncan |
description | We show that if the branched double cover of an alternating link arises as non‐integer surgery on a knot in S3, then this is exhibited by a rational tangle replacement in an alternating diagram. |
doi_str_mv | 10.1112/jlms/jdv030 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904239886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904239886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3081-ebbfbe20d6d6f54adf87b8b70cbc6ef5324895f197e0bceaa3608e11ba8acb693</originalsourceid><addsrcrecordid>eNp90L1OwzAUhmELgUQpTNxARiQUek6cOM6IKn5VYADmyHaOS0oaFzsp6sYlcI1cCa3CzPQtj77hZewU4QIRk8miWYbJoloDhz02wlQUcZ5nsM9GAEkaC4T8kB2FsABAjpCM2NWja3--vuu2ozn5KPR-O5tItVWkvWrNG1VR5XrdUGTcmnyInI1U05FvVVe38-i9dV04ZgdWNYFO_nbMXq-vXqa38ezp5m56OYsNB4kxaW01JVCJStgsVZWVuZY6B6ONIJvxJJVFZrHICbQhpbgASYhaSWW0KPiYnQ2_K-8-egpduayDoaZRLbk-lFhAmvBCSrGl5wM13oXgyZYrXy-V35QI5S5WuYtVDrG2Ggf9WTe0-Y-W97OHZ-CI_BdXN3D8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904239886</pqid></control><display><type>article</type><title>Non‐integer surgery and branched double covers of alternating knots</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>McCoy, Duncan</creator><creatorcontrib>McCoy, Duncan</creatorcontrib><description>We show that if the branched double cover of an alternating link arises as non‐integer surgery on a knot in S3, then this is exhibited by a rational tangle replacement in an alternating diagram.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms/jdv030</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Formulas (mathematics) ; Knots ; Links ; Mathematical analysis ; Surgery</subject><ispartof>Journal of the London Mathematical Society, 2015-10, Vol.92 (2), p.311-337</ispartof><rights>2015 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3081-ebbfbe20d6d6f54adf87b8b70cbc6ef5324895f197e0bceaa3608e11ba8acb693</citedby><cites>FETCH-LOGICAL-c3081-ebbfbe20d6d6f54adf87b8b70cbc6ef5324895f197e0bceaa3608e11ba8acb693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>McCoy, Duncan</creatorcontrib><title>Non‐integer surgery and branched double covers of alternating knots</title><title>Journal of the London Mathematical Society</title><description>We show that if the branched double cover of an alternating link arises as non‐integer surgery on a knot in S3, then this is exhibited by a rational tangle replacement in an alternating diagram.</description><subject>Formulas (mathematics)</subject><subject>Knots</subject><subject>Links</subject><subject>Mathematical analysis</subject><subject>Surgery</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90L1OwzAUhmELgUQpTNxARiQUek6cOM6IKn5VYADmyHaOS0oaFzsp6sYlcI1cCa3CzPQtj77hZewU4QIRk8miWYbJoloDhz02wlQUcZ5nsM9GAEkaC4T8kB2FsABAjpCM2NWja3--vuu2ozn5KPR-O5tItVWkvWrNG1VR5XrdUGTcmnyInI1U05FvVVe38-i9dV04ZgdWNYFO_nbMXq-vXqa38ezp5m56OYsNB4kxaW01JVCJStgsVZWVuZY6B6ONIJvxJJVFZrHICbQhpbgASYhaSWW0KPiYnQ2_K-8-egpduayDoaZRLbk-lFhAmvBCSrGl5wM13oXgyZYrXy-V35QI5S5WuYtVDrG2Ggf9WTe0-Y-W97OHZ-CI_BdXN3D8</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>McCoy, Duncan</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201510</creationdate><title>Non‐integer surgery and branched double covers of alternating knots</title><author>McCoy, Duncan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3081-ebbfbe20d6d6f54adf87b8b70cbc6ef5324895f197e0bceaa3608e11ba8acb693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Formulas (mathematics)</topic><topic>Knots</topic><topic>Links</topic><topic>Mathematical analysis</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCoy, Duncan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCoy, Duncan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐integer surgery and branched double covers of alternating knots</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2015-10</date><risdate>2015</risdate><volume>92</volume><issue>2</issue><spage>311</spage><epage>337</epage><pages>311-337</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>We show that if the branched double cover of an alternating link arises as non‐integer surgery on a knot in S3, then this is exhibited by a rational tangle replacement in an alternating diagram.</abstract><pub>Oxford University Press</pub><doi>10.1112/jlms/jdv030</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6107 |
ispartof | Journal of the London Mathematical Society, 2015-10, Vol.92 (2), p.311-337 |
issn | 0024-6107 1469-7750 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904239886 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Formulas (mathematics) Knots Links Mathematical analysis Surgery |
title | Non‐integer surgery and branched double covers of alternating knots |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90integer%20surgery%20and%20branched%20double%20covers%20of%20alternating%20knots&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=McCoy,%20Duncan&rft.date=2015-10&rft.volume=92&rft.issue=2&rft.spage=311&rft.epage=337&rft.pages=311-337&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms/jdv030&rft_dat=%3Cproquest_cross%3E1904239886%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3081-ebbfbe20d6d6f54adf87b8b70cbc6ef5324895f197e0bceaa3608e11ba8acb693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1904239886&rft_id=info:pmid/&rfr_iscdi=true |