Loading…

A discrete artificial bee colony algorithm for single machine scheduling problems

This paper presents a discrete artificial bee colony algorithm for a single machine earliness-tardiness scheduling problem. The objective of single machine earliness-tardiness scheduling problems is to find a job sequence that minimises the total sum of earliness-tardiness penalties. Artificial bee...

Full description

Saved in:
Bibliographic Details
Published in:International journal of production research 2016-11, Vol.54 (22), p.6860-6878
Main Authors: Yurtkuran, Alkın, Emel, Erdal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a discrete artificial bee colony algorithm for a single machine earliness-tardiness scheduling problem. The objective of single machine earliness-tardiness scheduling problems is to find a job sequence that minimises the total sum of earliness-tardiness penalties. Artificial bee colony (ABC) algorithm is a swarm-based meta-heuristic, which mimics the foraging behaviour of honey bee swarms. In this study, several modifications to the original ABC algorithm are proposed for adapting the algorithm to efficiently solve combinatorial optimisation problems like single machine scheduling. In proposed study, instead of using a single search operator to generate neighbour solutions, random selection from an operator pool is employed. Moreover, novel crossover operators are presented and employed with several parent sets with different characteristics to enhance both exploration and exploitation behaviour of the proposed algorithm. The performance of the presented meta-heuristic is evaluated on several benchmark problems in detail and compared with the state-of-the-art algorithms. Computational results indicate that the algorithm can produce better solutions in terms of solution quality, robustness and computational time when compared to other algorithms.
ISSN:0020-7543
1366-588X
DOI:10.1080/00207543.2016.1185550