Loading…

Unravelling the early photochemical behavior of (8-substituted-7-hydroxyquinolinyl)methyl acetates through electronic structure theory and ultrafast transient absorption spectroscopy

The photophysical processes and photochemical reactions in the ultrafast time region of (8-bromo-7-hydroxyquinolin-2-yl)methyl acetate (BHQ-OAc) in acetonitrile and neutral aqueous solutions were investigated using quantum chemical calculations and femtosecond transient absorption spectroscopy. Afte...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2017, Vol.19 (2), p.1089-1096
Main Authors: Ma, Jiani, Mewes, Jan-Michael, Harris, Kyle T, Dore, Timothy M, Phillips, David Lee, Dreuw, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The photophysical processes and photochemical reactions in the ultrafast time region of (8-bromo-7-hydroxyquinolin-2-yl)methyl acetate (BHQ-OAc) in acetonitrile and neutral aqueous solutions were investigated using quantum chemical calculations and femtosecond transient absorption spectroscopy. After initial excitation into the π,π* excited state, BHQ-OAc undergoes an ultrafast intersystem crossing (ISC) into a π,π* excited triplet state on a timescale of 16 ps. The n,π* and π,π* excited singlet and triplet states involved in the photochemistry were identified by means of their characteristic excited state absorption (ESA) bands and from second order coupled-cluster (CC2) calculations. The high ISC rate of BHQ-OAc and related compounds is traced back to involvement of almost energetically degenerate n,π* excited states that enable efficient ISC that obeys El-Sayed's rules.
ISSN:1463-9076
1463-9084
DOI:10.1039/c6cp05499d