Loading…
A comparison of sampling grids, cut-off distance and type of residuals in parametric variogram estimation
In spatial statistics, the correct identification of a variogram model when fitted to an empirical variogram depends on many factors. Here, simulation experiments show fitting based on the variogram cloud is preferable to that based on Matheron's and Cressie-Hawkins empirical variogram estimato...
Saved in:
Published in: | Communications in statistics. Simulation and computation 2017-03, Vol.46 (3), p.1781-1795 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-6ee29f6d24e1e00277f2b668319540905b7c0075a00c139a99f556c2500332323 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-6ee29f6d24e1e00277f2b668319540905b7c0075a00c139a99f556c2500332323 |
container_end_page | 1795 |
container_issue | 3 |
container_start_page | 1781 |
container_title | Communications in statistics. Simulation and computation |
container_volume | 46 |
creator | Jin, Renhao Kelly, Gabrielle E. |
description | In spatial statistics, the correct identification of a variogram model when fitted to an empirical variogram depends on many factors. Here, simulation experiments show fitting based on the variogram cloud is preferable to that based on Matheron's and Cressie-Hawkins empirical variogram estimators. For correct model specification, a number of models should be fitted to the empirical variogram using a grid of cut-off values, and recommendations are given for best choice. A design where roughly half the maximum distance between points equals the practical range works well for correct variogram identification of any model, with varying nugget sizes and sample sizes. |
doi_str_mv | 10.1080/03610918.2015.1011785 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904243709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904243709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-6ee29f6d24e1e00277f2b668319540905b7c0075a00c139a99f556c2500332323</originalsourceid><addsrcrecordid>eNp9kU9rHSEUxaU00NckHyEgdNNFJrlXxxndNYT-CQS6adZiHH0YZnSqMwnv28fhJZsuiouL8rvneu4h5ALhCkHCNfAOQaG8YoCiPiH2UnwgOxScNS22-JHsNqbZoE_kcylPAMBlK3ck3FCbptnkUFKkydNipnkMcU_3OQzlktp1aZL3dAhlMdE6auJAl8PsNji7EobVjIWGSKuImdySg6XPVS_t65W6soTJLCHFM3LiK-nO3-opefjx_c_tr-b-98-725v7xrYol6ZzjinfDax16ABY33v22HWSoxItKBCPvQXohQGwyJVRygvRWSaqI87qOSVfj7pzTn_XOl9PoVg3jia6tBaNClrW8h5URb_8gz6lNcf6O42ylxL6jkOlxJGyOZWSnddzrp7yQSPoLQD9HoDeAtBvAdS-b8e-EH3Kk3lJeRz0Yg5jyj7XXYai-f8lXgHBHosH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878807630</pqid></control><display><type>article</type><title>A comparison of sampling grids, cut-off distance and type of residuals in parametric variogram estimation</title><source>Taylor and Francis Science and Technology Collection</source><creator>Jin, Renhao ; Kelly, Gabrielle E.</creator><creatorcontrib>Jin, Renhao ; Kelly, Gabrielle E.</creatorcontrib><description>In spatial statistics, the correct identification of a variogram model when fitted to an empirical variogram depends on many factors. Here, simulation experiments show fitting based on the variogram cloud is preferable to that based on Matheron's and Cressie-Hawkins empirical variogram estimators. For correct model specification, a number of models should be fitted to the empirical variogram using a grid of cut-off values, and recommendations are given for best choice. A design where roughly half the maximum distance between points equals the practical range works well for correct variogram identification of any model, with varying nugget sizes and sample sizes.</description><identifier>ISSN: 0361-0918</identifier><identifier>EISSN: 1532-4141</identifier><identifier>DOI: 10.1080/03610918.2015.1011785</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Computer simulation ; Cut-off ; Estimators ; Fittings ; Matérn ; Practical range ; Samples ; Sampling ; Specifications ; Statistics ; Studentized residuals ; Variogram cloud ; Variogram model fitting</subject><ispartof>Communications in statistics. Simulation and computation, 2017-03, Vol.46 (3), p.1781-1795</ispartof><rights>2017 Taylor & Francis Group, LLC 2017</rights><rights>2017 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-6ee29f6d24e1e00277f2b668319540905b7c0075a00c139a99f556c2500332323</citedby><cites>FETCH-LOGICAL-c418t-6ee29f6d24e1e00277f2b668319540905b7c0075a00c139a99f556c2500332323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Jin, Renhao</creatorcontrib><creatorcontrib>Kelly, Gabrielle E.</creatorcontrib><title>A comparison of sampling grids, cut-off distance and type of residuals in parametric variogram estimation</title><title>Communications in statistics. Simulation and computation</title><description>In spatial statistics, the correct identification of a variogram model when fitted to an empirical variogram depends on many factors. Here, simulation experiments show fitting based on the variogram cloud is preferable to that based on Matheron's and Cressie-Hawkins empirical variogram estimators. For correct model specification, a number of models should be fitted to the empirical variogram using a grid of cut-off values, and recommendations are given for best choice. A design where roughly half the maximum distance between points equals the practical range works well for correct variogram identification of any model, with varying nugget sizes and sample sizes.</description><subject>Computer simulation</subject><subject>Cut-off</subject><subject>Estimators</subject><subject>Fittings</subject><subject>Matérn</subject><subject>Practical range</subject><subject>Samples</subject><subject>Sampling</subject><subject>Specifications</subject><subject>Statistics</subject><subject>Studentized residuals</subject><subject>Variogram cloud</subject><subject>Variogram model fitting</subject><issn>0361-0918</issn><issn>1532-4141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kU9rHSEUxaU00NckHyEgdNNFJrlXxxndNYT-CQS6adZiHH0YZnSqMwnv28fhJZsuiouL8rvneu4h5ALhCkHCNfAOQaG8YoCiPiH2UnwgOxScNS22-JHsNqbZoE_kcylPAMBlK3ck3FCbptnkUFKkydNipnkMcU_3OQzlktp1aZL3dAhlMdE6auJAl8PsNji7EobVjIWGSKuImdySg6XPVS_t65W6soTJLCHFM3LiK-nO3-opefjx_c_tr-b-98-725v7xrYol6ZzjinfDax16ABY33v22HWSoxItKBCPvQXohQGwyJVRygvRWSaqI87qOSVfj7pzTn_XOl9PoVg3jia6tBaNClrW8h5URb_8gz6lNcf6O42ylxL6jkOlxJGyOZWSnddzrp7yQSPoLQD9HoDeAtBvAdS-b8e-EH3Kk3lJeRz0Yg5jyj7XXYai-f8lXgHBHosH</recordid><startdate>20170316</startdate><enddate>20170316</enddate><creator>Jin, Renhao</creator><creator>Kelly, Gabrielle E.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170316</creationdate><title>A comparison of sampling grids, cut-off distance and type of residuals in parametric variogram estimation</title><author>Jin, Renhao ; Kelly, Gabrielle E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-6ee29f6d24e1e00277f2b668319540905b7c0075a00c139a99f556c2500332323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Cut-off</topic><topic>Estimators</topic><topic>Fittings</topic><topic>Matérn</topic><topic>Practical range</topic><topic>Samples</topic><topic>Sampling</topic><topic>Specifications</topic><topic>Statistics</topic><topic>Studentized residuals</topic><topic>Variogram cloud</topic><topic>Variogram model fitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Renhao</creatorcontrib><creatorcontrib>Kelly, Gabrielle E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Simulation and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Renhao</au><au>Kelly, Gabrielle E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of sampling grids, cut-off distance and type of residuals in parametric variogram estimation</atitle><jtitle>Communications in statistics. Simulation and computation</jtitle><date>2017-03-16</date><risdate>2017</risdate><volume>46</volume><issue>3</issue><spage>1781</spage><epage>1795</epage><pages>1781-1795</pages><issn>0361-0918</issn><eissn>1532-4141</eissn><abstract>In spatial statistics, the correct identification of a variogram model when fitted to an empirical variogram depends on many factors. Here, simulation experiments show fitting based on the variogram cloud is preferable to that based on Matheron's and Cressie-Hawkins empirical variogram estimators. For correct model specification, a number of models should be fitted to the empirical variogram using a grid of cut-off values, and recommendations are given for best choice. A design where roughly half the maximum distance between points equals the practical range works well for correct variogram identification of any model, with varying nugget sizes and sample sizes.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/03610918.2015.1011785</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-0918 |
ispartof | Communications in statistics. Simulation and computation, 2017-03, Vol.46 (3), p.1781-1795 |
issn | 0361-0918 1532-4141 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904243709 |
source | Taylor and Francis Science and Technology Collection |
subjects | Computer simulation Cut-off Estimators Fittings Matérn Practical range Samples Sampling Specifications Statistics Studentized residuals Variogram cloud Variogram model fitting |
title | A comparison of sampling grids, cut-off distance and type of residuals in parametric variogram estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T13%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20sampling%20grids,%20cut-off%20distance%20and%20type%20of%20residuals%20in%20parametric%20variogram%20estimation&rft.jtitle=Communications%20in%20statistics.%20Simulation%20and%20computation&rft.au=Jin,%20Renhao&rft.date=2017-03-16&rft.volume=46&rft.issue=3&rft.spage=1781&rft.epage=1795&rft.pages=1781-1795&rft.issn=0361-0918&rft.eissn=1532-4141&rft_id=info:doi/10.1080/03610918.2015.1011785&rft_dat=%3Cproquest_cross%3E1904243709%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-6ee29f6d24e1e00277f2b668319540905b7c0075a00c139a99f556c2500332323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1878807630&rft_id=info:pmid/&rfr_iscdi=true |