Loading…

Blow‐up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis

The initial‐boundary value problems for a Sobolev equation with exponential nonlinearities, classical, and nonclassical boundary conditions are considered. For this model, which describes processes in crystalline semiconductors, the blow‐up phenomena are studied. The sufficient blow‐up conditions an...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2017-05, Vol.40 (7), p.2336-2346
Main Authors: Korpusov, Maxim Olegovich, Lukyanenko, Dmitry V., Panin, Alexander A., Yushkov, Egor V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3962-6fced34c729434b1d2fa96fd5bb7a50cc6a4a21d65e667735baad4a0ad71b3693
cites cdi_FETCH-LOGICAL-c3962-6fced34c729434b1d2fa96fd5bb7a50cc6a4a21d65e667735baad4a0ad71b3693
container_end_page 2346
container_issue 7
container_start_page 2336
container_title Mathematical methods in the applied sciences
container_volume 40
creator Korpusov, Maxim Olegovich
Lukyanenko, Dmitry V.
Panin, Alexander A.
Yushkov, Egor V.
description The initial‐boundary value problems for a Sobolev equation with exponential nonlinearities, classical, and nonclassical boundary conditions are considered. For this model, which describes processes in crystalline semiconductors, the blow‐up phenomena are studied. The sufficient blow‐up conditions and the blow‐up time are analyzed by the method of the test functions. This analytical a priori information is used in the numerical experiments, which are able to determine the process of the solution's blow‐up more accurately. The model derivation and some questions of local solvability and uniqueness are also discussed. Copyright © 2016 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.4142
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904245228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321791329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3962-6fced34c729434b1d2fa96fd5bb7a50cc6a4a21d65e667735baad4a0ad71b3693</originalsourceid><addsrcrecordid>eNp10d1KwzAUB_AgCs4p-AgBb7zpTNI0bb2bwy_Y8Eavy2mSuoy2qUnr2J2P4DP6JGZuIAjenHNCfhwO_BE6p2RCCWFXTQMTTjk7QCNK8jyiPBWHaERoSiLOKD9GJ96vCCEZpWyE3m9qu_76-Bw63C11axvdAjYt7pcaN1bpGtsKA_YdSI3lEtyrxr530JvKyFBtu9VeN0baVg2yt85fY2ih3vQB1GFUuB0a7fav8OGNP0VHFdRen-37GL3c3T7PHqL50_3jbDqPZJwLFolKahVzmbKcx7ykilWQi0olZZlCQqQUwIFRJRItRJrGSQmgOBBQKS1jkcdjdLnb2zn7NmjfF43xUtc1tNoOvqA54YwnjGWBXvyhKzu4cG9QWZYzIijJfhdKZ713uio6Zxpwm4KSYhtAEQIotgEEGu3o2tR6868rFovpj_8GwGSJHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889206108</pqid></control><display><type>article</type><title>Blow‐up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Korpusov, Maxim Olegovich ; Lukyanenko, Dmitry V. ; Panin, Alexander A. ; Yushkov, Egor V.</creator><creatorcontrib>Korpusov, Maxim Olegovich ; Lukyanenko, Dmitry V. ; Panin, Alexander A. ; Yushkov, Egor V.</creatorcontrib><description>The initial‐boundary value problems for a Sobolev equation with exponential nonlinearities, classical, and nonclassical boundary conditions are considered. For this model, which describes processes in crystalline semiconductors, the blow‐up phenomena are studied. The sufficient blow‐up conditions and the blow‐up time are analyzed by the method of the test functions. This analytical a priori information is used in the numerical experiments, which are able to determine the process of the solution's blow‐up more accurately. The model derivation and some questions of local solvability and uniqueness are also discussed. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.4142</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>blow‐up phenomena ; Boundary value problems ; contracting mapping ; Crystal structure ; Derivation ; Initial value problems ; local solvability ; Mathematical analysis ; Mathematical models ; numerical blow‐up diagnostics ; Semiconductors ; test functions ; Uniqueness</subject><ispartof>Mathematical methods in the applied sciences, 2017-05, Vol.40 (7), p.2336-2346</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3962-6fced34c729434b1d2fa96fd5bb7a50cc6a4a21d65e667735baad4a0ad71b3693</citedby><cites>FETCH-LOGICAL-c3962-6fced34c729434b1d2fa96fd5bb7a50cc6a4a21d65e667735baad4a0ad71b3693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Korpusov, Maxim Olegovich</creatorcontrib><creatorcontrib>Lukyanenko, Dmitry V.</creatorcontrib><creatorcontrib>Panin, Alexander A.</creatorcontrib><creatorcontrib>Yushkov, Egor V.</creatorcontrib><title>Blow‐up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis</title><title>Mathematical methods in the applied sciences</title><description>The initial‐boundary value problems for a Sobolev equation with exponential nonlinearities, classical, and nonclassical boundary conditions are considered. For this model, which describes processes in crystalline semiconductors, the blow‐up phenomena are studied. The sufficient blow‐up conditions and the blow‐up time are analyzed by the method of the test functions. This analytical a priori information is used in the numerical experiments, which are able to determine the process of the solution's blow‐up more accurately. The model derivation and some questions of local solvability and uniqueness are also discussed. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><subject>blow‐up phenomena</subject><subject>Boundary value problems</subject><subject>contracting mapping</subject><subject>Crystal structure</subject><subject>Derivation</subject><subject>Initial value problems</subject><subject>local solvability</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>numerical blow‐up diagnostics</subject><subject>Semiconductors</subject><subject>test functions</subject><subject>Uniqueness</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10d1KwzAUB_AgCs4p-AgBb7zpTNI0bb2bwy_Y8Eavy2mSuoy2qUnr2J2P4DP6JGZuIAjenHNCfhwO_BE6p2RCCWFXTQMTTjk7QCNK8jyiPBWHaERoSiLOKD9GJ96vCCEZpWyE3m9qu_76-Bw63C11axvdAjYt7pcaN1bpGtsKA_YdSI3lEtyrxr530JvKyFBtu9VeN0baVg2yt85fY2ih3vQB1GFUuB0a7fav8OGNP0VHFdRen-37GL3c3T7PHqL50_3jbDqPZJwLFolKahVzmbKcx7ykilWQi0olZZlCQqQUwIFRJRItRJrGSQmgOBBQKS1jkcdjdLnb2zn7NmjfF43xUtc1tNoOvqA54YwnjGWBXvyhKzu4cG9QWZYzIijJfhdKZ713uio6Zxpwm4KSYhtAEQIotgEEGu3o2tR6868rFovpj_8GwGSJHg</recordid><startdate>20170515</startdate><enddate>20170515</enddate><creator>Korpusov, Maxim Olegovich</creator><creator>Lukyanenko, Dmitry V.</creator><creator>Panin, Alexander A.</creator><creator>Yushkov, Egor V.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20170515</creationdate><title>Blow‐up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis</title><author>Korpusov, Maxim Olegovich ; Lukyanenko, Dmitry V. ; Panin, Alexander A. ; Yushkov, Egor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3962-6fced34c729434b1d2fa96fd5bb7a50cc6a4a21d65e667735baad4a0ad71b3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>blow‐up phenomena</topic><topic>Boundary value problems</topic><topic>contracting mapping</topic><topic>Crystal structure</topic><topic>Derivation</topic><topic>Initial value problems</topic><topic>local solvability</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>numerical blow‐up diagnostics</topic><topic>Semiconductors</topic><topic>test functions</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korpusov, Maxim Olegovich</creatorcontrib><creatorcontrib>Lukyanenko, Dmitry V.</creatorcontrib><creatorcontrib>Panin, Alexander A.</creatorcontrib><creatorcontrib>Yushkov, Egor V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korpusov, Maxim Olegovich</au><au>Lukyanenko, Dmitry V.</au><au>Panin, Alexander A.</au><au>Yushkov, Egor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blow‐up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2017-05-15</date><risdate>2017</risdate><volume>40</volume><issue>7</issue><spage>2336</spage><epage>2346</epage><pages>2336-2346</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>The initial‐boundary value problems for a Sobolev equation with exponential nonlinearities, classical, and nonclassical boundary conditions are considered. For this model, which describes processes in crystalline semiconductors, the blow‐up phenomena are studied. The sufficient blow‐up conditions and the blow‐up time are analyzed by the method of the test functions. This analytical a priori information is used in the numerical experiments, which are able to determine the process of the solution's blow‐up more accurately. The model derivation and some questions of local solvability and uniqueness are also discussed. Copyright © 2016 John Wiley &amp; Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.4142</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2017-05, Vol.40 (7), p.2336-2346
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_miscellaneous_1904245228
source Wiley-Blackwell Read & Publish Collection
subjects blow‐up phenomena
Boundary value problems
contracting mapping
Crystal structure
Derivation
Initial value problems
local solvability
Mathematical analysis
Mathematical models
numerical blow‐up diagnostics
Semiconductors
test functions
Uniqueness
title Blow‐up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blow%E2%80%90up%20phenomena%20in%20the%20model%20of%20a%20space%20charge%20stratification%20in%20semiconductors:%20analytical%20and%20numerical%20analysis&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Korpusov,%20Maxim%20Olegovich&rft.date=2017-05-15&rft.volume=40&rft.issue=7&rft.spage=2336&rft.epage=2346&rft.pages=2336-2346&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.4142&rft_dat=%3Cproquest_cross%3E4321791329%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3962-6fced34c729434b1d2fa96fd5bb7a50cc6a4a21d65e667735baad4a0ad71b3693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1889206108&rft_id=info:pmid/&rfr_iscdi=true