Loading…
Blow‐up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis
The initial‐boundary value problems for a Sobolev equation with exponential nonlinearities, classical, and nonclassical boundary conditions are considered. For this model, which describes processes in crystalline semiconductors, the blow‐up phenomena are studied. The sufficient blow‐up conditions an...
Saved in:
Published in: | Mathematical methods in the applied sciences 2017-05, Vol.40 (7), p.2336-2346 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3962-6fced34c729434b1d2fa96fd5bb7a50cc6a4a21d65e667735baad4a0ad71b3693 |
---|---|
cites | cdi_FETCH-LOGICAL-c3962-6fced34c729434b1d2fa96fd5bb7a50cc6a4a21d65e667735baad4a0ad71b3693 |
container_end_page | 2346 |
container_issue | 7 |
container_start_page | 2336 |
container_title | Mathematical methods in the applied sciences |
container_volume | 40 |
creator | Korpusov, Maxim Olegovich Lukyanenko, Dmitry V. Panin, Alexander A. Yushkov, Egor V. |
description | The initial‐boundary value problems for a Sobolev equation with exponential nonlinearities, classical, and nonclassical boundary conditions are considered. For this model, which describes processes in crystalline semiconductors, the blow‐up phenomena are studied. The sufficient blow‐up conditions and the blow‐up time are analyzed by the method of the test functions. This analytical a priori information is used in the numerical experiments, which are able to determine the process of the solution's blow‐up more accurately. The model derivation and some questions of local solvability and uniqueness are also discussed. Copyright © 2016 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.4142 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904245228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321791329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3962-6fced34c729434b1d2fa96fd5bb7a50cc6a4a21d65e667735baad4a0ad71b3693</originalsourceid><addsrcrecordid>eNp10d1KwzAUB_AgCs4p-AgBb7zpTNI0bb2bwy_Y8Eavy2mSuoy2qUnr2J2P4DP6JGZuIAjenHNCfhwO_BE6p2RCCWFXTQMTTjk7QCNK8jyiPBWHaERoSiLOKD9GJ96vCCEZpWyE3m9qu_76-Bw63C11axvdAjYt7pcaN1bpGtsKA_YdSI3lEtyrxr530JvKyFBtu9VeN0baVg2yt85fY2ih3vQB1GFUuB0a7fav8OGNP0VHFdRen-37GL3c3T7PHqL50_3jbDqPZJwLFolKahVzmbKcx7ykilWQi0olZZlCQqQUwIFRJRItRJrGSQmgOBBQKS1jkcdjdLnb2zn7NmjfF43xUtc1tNoOvqA54YwnjGWBXvyhKzu4cG9QWZYzIijJfhdKZ713uio6Zxpwm4KSYhtAEQIotgEEGu3o2tR6868rFovpj_8GwGSJHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889206108</pqid></control><display><type>article</type><title>Blow‐up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Korpusov, Maxim Olegovich ; Lukyanenko, Dmitry V. ; Panin, Alexander A. ; Yushkov, Egor V.</creator><creatorcontrib>Korpusov, Maxim Olegovich ; Lukyanenko, Dmitry V. ; Panin, Alexander A. ; Yushkov, Egor V.</creatorcontrib><description>The initial‐boundary value problems for a Sobolev equation with exponential nonlinearities, classical, and nonclassical boundary conditions are considered. For this model, which describes processes in crystalline semiconductors, the blow‐up phenomena are studied. The sufficient blow‐up conditions and the blow‐up time are analyzed by the method of the test functions. This analytical a priori information is used in the numerical experiments, which are able to determine the process of the solution's blow‐up more accurately. The model derivation and some questions of local solvability and uniqueness are also discussed. Copyright © 2016 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.4142</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>blow‐up phenomena ; Boundary value problems ; contracting mapping ; Crystal structure ; Derivation ; Initial value problems ; local solvability ; Mathematical analysis ; Mathematical models ; numerical blow‐up diagnostics ; Semiconductors ; test functions ; Uniqueness</subject><ispartof>Mathematical methods in the applied sciences, 2017-05, Vol.40 (7), p.2336-2346</ispartof><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3962-6fced34c729434b1d2fa96fd5bb7a50cc6a4a21d65e667735baad4a0ad71b3693</citedby><cites>FETCH-LOGICAL-c3962-6fced34c729434b1d2fa96fd5bb7a50cc6a4a21d65e667735baad4a0ad71b3693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Korpusov, Maxim Olegovich</creatorcontrib><creatorcontrib>Lukyanenko, Dmitry V.</creatorcontrib><creatorcontrib>Panin, Alexander A.</creatorcontrib><creatorcontrib>Yushkov, Egor V.</creatorcontrib><title>Blow‐up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis</title><title>Mathematical methods in the applied sciences</title><description>The initial‐boundary value problems for a Sobolev equation with exponential nonlinearities, classical, and nonclassical boundary conditions are considered. For this model, which describes processes in crystalline semiconductors, the blow‐up phenomena are studied. The sufficient blow‐up conditions and the blow‐up time are analyzed by the method of the test functions. This analytical a priori information is used in the numerical experiments, which are able to determine the process of the solution's blow‐up more accurately. The model derivation and some questions of local solvability and uniqueness are also discussed. Copyright © 2016 John Wiley & Sons, Ltd.</description><subject>blow‐up phenomena</subject><subject>Boundary value problems</subject><subject>contracting mapping</subject><subject>Crystal structure</subject><subject>Derivation</subject><subject>Initial value problems</subject><subject>local solvability</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>numerical blow‐up diagnostics</subject><subject>Semiconductors</subject><subject>test functions</subject><subject>Uniqueness</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10d1KwzAUB_AgCs4p-AgBb7zpTNI0bb2bwy_Y8Eavy2mSuoy2qUnr2J2P4DP6JGZuIAjenHNCfhwO_BE6p2RCCWFXTQMTTjk7QCNK8jyiPBWHaERoSiLOKD9GJ96vCCEZpWyE3m9qu_76-Bw63C11axvdAjYt7pcaN1bpGtsKA_YdSI3lEtyrxr530JvKyFBtu9VeN0baVg2yt85fY2ih3vQB1GFUuB0a7fav8OGNP0VHFdRen-37GL3c3T7PHqL50_3jbDqPZJwLFolKahVzmbKcx7ykilWQi0olZZlCQqQUwIFRJRItRJrGSQmgOBBQKS1jkcdjdLnb2zn7NmjfF43xUtc1tNoOvqA54YwnjGWBXvyhKzu4cG9QWZYzIijJfhdKZ713uio6Zxpwm4KSYhtAEQIotgEEGu3o2tR6868rFovpj_8GwGSJHg</recordid><startdate>20170515</startdate><enddate>20170515</enddate><creator>Korpusov, Maxim Olegovich</creator><creator>Lukyanenko, Dmitry V.</creator><creator>Panin, Alexander A.</creator><creator>Yushkov, Egor V.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20170515</creationdate><title>Blow‐up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis</title><author>Korpusov, Maxim Olegovich ; Lukyanenko, Dmitry V. ; Panin, Alexander A. ; Yushkov, Egor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3962-6fced34c729434b1d2fa96fd5bb7a50cc6a4a21d65e667735baad4a0ad71b3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>blow‐up phenomena</topic><topic>Boundary value problems</topic><topic>contracting mapping</topic><topic>Crystal structure</topic><topic>Derivation</topic><topic>Initial value problems</topic><topic>local solvability</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>numerical blow‐up diagnostics</topic><topic>Semiconductors</topic><topic>test functions</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korpusov, Maxim Olegovich</creatorcontrib><creatorcontrib>Lukyanenko, Dmitry V.</creatorcontrib><creatorcontrib>Panin, Alexander A.</creatorcontrib><creatorcontrib>Yushkov, Egor V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korpusov, Maxim Olegovich</au><au>Lukyanenko, Dmitry V.</au><au>Panin, Alexander A.</au><au>Yushkov, Egor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blow‐up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2017-05-15</date><risdate>2017</risdate><volume>40</volume><issue>7</issue><spage>2336</spage><epage>2346</epage><pages>2336-2346</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>The initial‐boundary value problems for a Sobolev equation with exponential nonlinearities, classical, and nonclassical boundary conditions are considered. For this model, which describes processes in crystalline semiconductors, the blow‐up phenomena are studied. The sufficient blow‐up conditions and the blow‐up time are analyzed by the method of the test functions. This analytical a priori information is used in the numerical experiments, which are able to determine the process of the solution's blow‐up more accurately. The model derivation and some questions of local solvability and uniqueness are also discussed. Copyright © 2016 John Wiley & Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.4142</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2017-05, Vol.40 (7), p.2336-2346 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904245228 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | blow‐up phenomena Boundary value problems contracting mapping Crystal structure Derivation Initial value problems local solvability Mathematical analysis Mathematical models numerical blow‐up diagnostics Semiconductors test functions Uniqueness |
title | Blow‐up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blow%E2%80%90up%20phenomena%20in%20the%20model%20of%20a%20space%20charge%20stratification%20in%20semiconductors:%20analytical%20and%20numerical%20analysis&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Korpusov,%20Maxim%20Olegovich&rft.date=2017-05-15&rft.volume=40&rft.issue=7&rft.spage=2336&rft.epage=2346&rft.pages=2336-2346&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.4142&rft_dat=%3Cproquest_cross%3E4321791329%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3962-6fced34c729434b1d2fa96fd5bb7a50cc6a4a21d65e667735baad4a0ad71b3693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1889206108&rft_id=info:pmid/&rfr_iscdi=true |