Loading…
Electro‐conductive fabrics based on dip coating of cotton in poly(3‐hexylthiophene)
Electro‐conductive cotton fabrics based on poly(3‐hexylthiophene) (P3HT) were prepared using dip coating processing technique. The effect of solvent type used for the preparation of P3HT solutions on the amount of polymer incorporated into the fabric and the morphology of P3HT coated cotton fabrics...
Saved in:
Published in: | Polymers for advanced technologies 2017-05, Vol.28 (5), p.583-589 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3267-c9cf83c54477a10a6a8678773b800643fbbb5e1fa434b7234912278ad1f760fe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3267-c9cf83c54477a10a6a8678773b800643fbbb5e1fa434b7234912278ad1f760fe3 |
container_end_page | 589 |
container_issue | 5 |
container_start_page | 583 |
container_title | Polymers for advanced technologies |
container_volume | 28 |
creator | Cohen David, Nofar David, Yaniv Katz, Nathaniel Milanovich, Michael Anavi, Daniel Buzhor, Marina Amir, Elizabeth |
description | Electro‐conductive cotton fabrics based on poly(3‐hexylthiophene) (P3HT) were prepared using dip coating processing technique. The effect of solvent type used for the preparation of P3HT solutions on the amount of polymer incorporated into the fabric and the morphology of P3HT coated cotton fabrics were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Thermal and mechanical studies revealed that after incorporation of P3HT, the fabrics preserved their original thermal stability and mechanical properties. Electrical resistivity measurements showed a decrease by several orders of magnitude in both surface and volume resistivities for cotton‐P3HT system relative to the untreated cotton. We also demonstrate that further significant improvement in electrical resistivity can be achieved by doping P3HT coated cotton with iodine. Copyright © 2016 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/pat.3857 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904248447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904248447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3267-c9cf83c54477a10a6a8678773b800643fbbb5e1fa434b7234912278ad1f760fe3</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI6Cj1BwMy465q9NuhyG8QcGdDHiMqRp4mToNDVp1e58BJ_RJzGjgiC4uod7v3u49wBwiuAUQYgvWtlNCc_YHhghWBQpyjja32mKU4YoOwRHIWwgjLOCjcDDotaq8-7j7V25pupVZ591YmTprQpJKYOuEtcklW0T5WRnm8fEmSi7LnZtk7SuHiYkbq_161B3a-vatW70-TE4MLIO-uSnjsH95WI1v06Xt1c389kyVQTnLFWFMpyojFLGJIIylzxnnDFScghzSkxZlplGRlJCS4YJLRDGjMsKGZZDo8kYTL59W--eeh06sbVB6bqWjXZ9EKiIj1Me_SN69gfduN438TqBOC8wzjijv4bKuxC8NqL1div9IBAUu4RFTFjsEo5o-o2-2FoP_3Librb64j8BP_B9Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889225874</pqid></control><display><type>article</type><title>Electro‐conductive fabrics based on dip coating of cotton in poly(3‐hexylthiophene)</title><source>Wiley</source><creator>Cohen David, Nofar ; David, Yaniv ; Katz, Nathaniel ; Milanovich, Michael ; Anavi, Daniel ; Buzhor, Marina ; Amir, Elizabeth</creator><creatorcontrib>Cohen David, Nofar ; David, Yaniv ; Katz, Nathaniel ; Milanovich, Michael ; Anavi, Daniel ; Buzhor, Marina ; Amir, Elizabeth</creatorcontrib><description>Electro‐conductive cotton fabrics based on poly(3‐hexylthiophene) (P3HT) were prepared using dip coating processing technique. The effect of solvent type used for the preparation of P3HT solutions on the amount of polymer incorporated into the fabric and the morphology of P3HT coated cotton fabrics were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Thermal and mechanical studies revealed that after incorporation of P3HT, the fabrics preserved their original thermal stability and mechanical properties. Electrical resistivity measurements showed a decrease by several orders of magnitude in both surface and volume resistivities for cotton‐P3HT system relative to the untreated cotton. We also demonstrate that further significant improvement in electrical resistivity can be achieved by doping P3HT coated cotton with iodine. Copyright © 2016 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1042-7147</identifier><identifier>EISSN: 1099-1581</identifier><identifier>DOI: 10.1002/pat.3857</identifier><identifier>CODEN: PADTE5</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Cotton ; dip coating ; doping ; Electrical resistivity ; electro‐conductive cotton ; Fabrics ; Fourier transforms ; Immersion coating ; Infrared spectroscopy ; intrinsically conductive polymers ; poly(3‐hexylthiophene) ; Polymers ; Scanning electron microscopy</subject><ispartof>Polymers for advanced technologies, 2017-05, Vol.28 (5), p.583-589</ispartof><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3267-c9cf83c54477a10a6a8678773b800643fbbb5e1fa434b7234912278ad1f760fe3</citedby><cites>FETCH-LOGICAL-c3267-c9cf83c54477a10a6a8678773b800643fbbb5e1fa434b7234912278ad1f760fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cohen David, Nofar</creatorcontrib><creatorcontrib>David, Yaniv</creatorcontrib><creatorcontrib>Katz, Nathaniel</creatorcontrib><creatorcontrib>Milanovich, Michael</creatorcontrib><creatorcontrib>Anavi, Daniel</creatorcontrib><creatorcontrib>Buzhor, Marina</creatorcontrib><creatorcontrib>Amir, Elizabeth</creatorcontrib><title>Electro‐conductive fabrics based on dip coating of cotton in poly(3‐hexylthiophene)</title><title>Polymers for advanced technologies</title><description>Electro‐conductive cotton fabrics based on poly(3‐hexylthiophene) (P3HT) were prepared using dip coating processing technique. The effect of solvent type used for the preparation of P3HT solutions on the amount of polymer incorporated into the fabric and the morphology of P3HT coated cotton fabrics were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Thermal and mechanical studies revealed that after incorporation of P3HT, the fabrics preserved their original thermal stability and mechanical properties. Electrical resistivity measurements showed a decrease by several orders of magnitude in both surface and volume resistivities for cotton‐P3HT system relative to the untreated cotton. We also demonstrate that further significant improvement in electrical resistivity can be achieved by doping P3HT coated cotton with iodine. Copyright © 2016 John Wiley & Sons, Ltd.</description><subject>Cotton</subject><subject>dip coating</subject><subject>doping</subject><subject>Electrical resistivity</subject><subject>electro‐conductive cotton</subject><subject>Fabrics</subject><subject>Fourier transforms</subject><subject>Immersion coating</subject><subject>Infrared spectroscopy</subject><subject>intrinsically conductive polymers</subject><subject>poly(3‐hexylthiophene)</subject><subject>Polymers</subject><subject>Scanning electron microscopy</subject><issn>1042-7147</issn><issn>1099-1581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoOI6Cj1BwMy465q9NuhyG8QcGdDHiMqRp4mToNDVp1e58BJ_RJzGjgiC4uod7v3u49wBwiuAUQYgvWtlNCc_YHhghWBQpyjja32mKU4YoOwRHIWwgjLOCjcDDotaq8-7j7V25pupVZ591YmTprQpJKYOuEtcklW0T5WRnm8fEmSi7LnZtk7SuHiYkbq_161B3a-vatW70-TE4MLIO-uSnjsH95WI1v06Xt1c389kyVQTnLFWFMpyojFLGJIIylzxnnDFScghzSkxZlplGRlJCS4YJLRDGjMsKGZZDo8kYTL59W--eeh06sbVB6bqWjXZ9EKiIj1Me_SN69gfduN438TqBOC8wzjijv4bKuxC8NqL1div9IBAUu4RFTFjsEo5o-o2-2FoP_3Librb64j8BP_B9Xg</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Cohen David, Nofar</creator><creator>David, Yaniv</creator><creator>Katz, Nathaniel</creator><creator>Milanovich, Michael</creator><creator>Anavi, Daniel</creator><creator>Buzhor, Marina</creator><creator>Amir, Elizabeth</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201705</creationdate><title>Electro‐conductive fabrics based on dip coating of cotton in poly(3‐hexylthiophene)</title><author>Cohen David, Nofar ; David, Yaniv ; Katz, Nathaniel ; Milanovich, Michael ; Anavi, Daniel ; Buzhor, Marina ; Amir, Elizabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3267-c9cf83c54477a10a6a8678773b800643fbbb5e1fa434b7234912278ad1f760fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cotton</topic><topic>dip coating</topic><topic>doping</topic><topic>Electrical resistivity</topic><topic>electro‐conductive cotton</topic><topic>Fabrics</topic><topic>Fourier transforms</topic><topic>Immersion coating</topic><topic>Infrared spectroscopy</topic><topic>intrinsically conductive polymers</topic><topic>poly(3‐hexylthiophene)</topic><topic>Polymers</topic><topic>Scanning electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen David, Nofar</creatorcontrib><creatorcontrib>David, Yaniv</creatorcontrib><creatorcontrib>Katz, Nathaniel</creatorcontrib><creatorcontrib>Milanovich, Michael</creatorcontrib><creatorcontrib>Anavi, Daniel</creatorcontrib><creatorcontrib>Buzhor, Marina</creatorcontrib><creatorcontrib>Amir, Elizabeth</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymers for advanced technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen David, Nofar</au><au>David, Yaniv</au><au>Katz, Nathaniel</au><au>Milanovich, Michael</au><au>Anavi, Daniel</au><au>Buzhor, Marina</au><au>Amir, Elizabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electro‐conductive fabrics based on dip coating of cotton in poly(3‐hexylthiophene)</atitle><jtitle>Polymers for advanced technologies</jtitle><date>2017-05</date><risdate>2017</risdate><volume>28</volume><issue>5</issue><spage>583</spage><epage>589</epage><pages>583-589</pages><issn>1042-7147</issn><eissn>1099-1581</eissn><coden>PADTE5</coden><abstract>Electro‐conductive cotton fabrics based on poly(3‐hexylthiophene) (P3HT) were prepared using dip coating processing technique. The effect of solvent type used for the preparation of P3HT solutions on the amount of polymer incorporated into the fabric and the morphology of P3HT coated cotton fabrics were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Thermal and mechanical studies revealed that after incorporation of P3HT, the fabrics preserved their original thermal stability and mechanical properties. Electrical resistivity measurements showed a decrease by several orders of magnitude in both surface and volume resistivities for cotton‐P3HT system relative to the untreated cotton. We also demonstrate that further significant improvement in electrical resistivity can be achieved by doping P3HT coated cotton with iodine. Copyright © 2016 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pat.3857</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-7147 |
ispartof | Polymers for advanced technologies, 2017-05, Vol.28 (5), p.583-589 |
issn | 1042-7147 1099-1581 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904248447 |
source | Wiley |
subjects | Cotton dip coating doping Electrical resistivity electro‐conductive cotton Fabrics Fourier transforms Immersion coating Infrared spectroscopy intrinsically conductive polymers poly(3‐hexylthiophene) Polymers Scanning electron microscopy |
title | Electro‐conductive fabrics based on dip coating of cotton in poly(3‐hexylthiophene) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electro%E2%80%90conductive%20fabrics%20based%20on%20dip%20coating%20of%20cotton%20in%20poly(3%E2%80%90hexylthiophene)&rft.jtitle=Polymers%20for%20advanced%20technologies&rft.au=Cohen%20David,%20Nofar&rft.date=2017-05&rft.volume=28&rft.issue=5&rft.spage=583&rft.epage=589&rft.pages=583-589&rft.issn=1042-7147&rft.eissn=1099-1581&rft.coden=PADTE5&rft_id=info:doi/10.1002/pat.3857&rft_dat=%3Cproquest_cross%3E1904248447%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3267-c9cf83c54477a10a6a8678773b800643fbbb5e1fa434b7234912278ad1f760fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1889225874&rft_id=info:pmid/&rfr_iscdi=true |