Loading…

Electro‐conductive fabrics based on dip coating of cotton in poly(3‐hexylthiophene)

Electro‐conductive cotton fabrics based on poly(3‐hexylthiophene) (P3HT) were prepared using dip coating processing technique. The effect of solvent type used for the preparation of P3HT solutions on the amount of polymer incorporated into the fabric and the morphology of P3HT coated cotton fabrics...

Full description

Saved in:
Bibliographic Details
Published in:Polymers for advanced technologies 2017-05, Vol.28 (5), p.583-589
Main Authors: Cohen David, Nofar, David, Yaniv, Katz, Nathaniel, Milanovich, Michael, Anavi, Daniel, Buzhor, Marina, Amir, Elizabeth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3267-c9cf83c54477a10a6a8678773b800643fbbb5e1fa434b7234912278ad1f760fe3
cites cdi_FETCH-LOGICAL-c3267-c9cf83c54477a10a6a8678773b800643fbbb5e1fa434b7234912278ad1f760fe3
container_end_page 589
container_issue 5
container_start_page 583
container_title Polymers for advanced technologies
container_volume 28
creator Cohen David, Nofar
David, Yaniv
Katz, Nathaniel
Milanovich, Michael
Anavi, Daniel
Buzhor, Marina
Amir, Elizabeth
description Electro‐conductive cotton fabrics based on poly(3‐hexylthiophene) (P3HT) were prepared using dip coating processing technique. The effect of solvent type used for the preparation of P3HT solutions on the amount of polymer incorporated into the fabric and the morphology of P3HT coated cotton fabrics were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Thermal and mechanical studies revealed that after incorporation of P3HT, the fabrics preserved their original thermal stability and mechanical properties. Electrical resistivity measurements showed a decrease by several orders of magnitude in both surface and volume resistivities for cotton‐P3HT system relative to the untreated cotton. We also demonstrate that further significant improvement in electrical resistivity can be achieved by doping P3HT coated cotton with iodine. Copyright © 2016 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/pat.3857
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904248447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904248447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3267-c9cf83c54477a10a6a8678773b800643fbbb5e1fa434b7234912278ad1f760fe3</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI6Cj1BwMy465q9NuhyG8QcGdDHiMqRp4mToNDVp1e58BJ_RJzGjgiC4uod7v3u49wBwiuAUQYgvWtlNCc_YHhghWBQpyjja32mKU4YoOwRHIWwgjLOCjcDDotaq8-7j7V25pupVZ591YmTprQpJKYOuEtcklW0T5WRnm8fEmSi7LnZtk7SuHiYkbq_161B3a-vatW70-TE4MLIO-uSnjsH95WI1v06Xt1c389kyVQTnLFWFMpyojFLGJIIylzxnnDFScghzSkxZlplGRlJCS4YJLRDGjMsKGZZDo8kYTL59W--eeh06sbVB6bqWjXZ9EKiIj1Me_SN69gfduN438TqBOC8wzjijv4bKuxC8NqL1div9IBAUu4RFTFjsEo5o-o2-2FoP_3Librb64j8BP_B9Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889225874</pqid></control><display><type>article</type><title>Electro‐conductive fabrics based on dip coating of cotton in poly(3‐hexylthiophene)</title><source>Wiley</source><creator>Cohen David, Nofar ; David, Yaniv ; Katz, Nathaniel ; Milanovich, Michael ; Anavi, Daniel ; Buzhor, Marina ; Amir, Elizabeth</creator><creatorcontrib>Cohen David, Nofar ; David, Yaniv ; Katz, Nathaniel ; Milanovich, Michael ; Anavi, Daniel ; Buzhor, Marina ; Amir, Elizabeth</creatorcontrib><description>Electro‐conductive cotton fabrics based on poly(3‐hexylthiophene) (P3HT) were prepared using dip coating processing technique. The effect of solvent type used for the preparation of P3HT solutions on the amount of polymer incorporated into the fabric and the morphology of P3HT coated cotton fabrics were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Thermal and mechanical studies revealed that after incorporation of P3HT, the fabrics preserved their original thermal stability and mechanical properties. Electrical resistivity measurements showed a decrease by several orders of magnitude in both surface and volume resistivities for cotton‐P3HT system relative to the untreated cotton. We also demonstrate that further significant improvement in electrical resistivity can be achieved by doping P3HT coated cotton with iodine. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1042-7147</identifier><identifier>EISSN: 1099-1581</identifier><identifier>DOI: 10.1002/pat.3857</identifier><identifier>CODEN: PADTE5</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Cotton ; dip coating ; doping ; Electrical resistivity ; electro‐conductive cotton ; Fabrics ; Fourier transforms ; Immersion coating ; Infrared spectroscopy ; intrinsically conductive polymers ; poly(3‐hexylthiophene) ; Polymers ; Scanning electron microscopy</subject><ispartof>Polymers for advanced technologies, 2017-05, Vol.28 (5), p.583-589</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3267-c9cf83c54477a10a6a8678773b800643fbbb5e1fa434b7234912278ad1f760fe3</citedby><cites>FETCH-LOGICAL-c3267-c9cf83c54477a10a6a8678773b800643fbbb5e1fa434b7234912278ad1f760fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cohen David, Nofar</creatorcontrib><creatorcontrib>David, Yaniv</creatorcontrib><creatorcontrib>Katz, Nathaniel</creatorcontrib><creatorcontrib>Milanovich, Michael</creatorcontrib><creatorcontrib>Anavi, Daniel</creatorcontrib><creatorcontrib>Buzhor, Marina</creatorcontrib><creatorcontrib>Amir, Elizabeth</creatorcontrib><title>Electro‐conductive fabrics based on dip coating of cotton in poly(3‐hexylthiophene)</title><title>Polymers for advanced technologies</title><description>Electro‐conductive cotton fabrics based on poly(3‐hexylthiophene) (P3HT) were prepared using dip coating processing technique. The effect of solvent type used for the preparation of P3HT solutions on the amount of polymer incorporated into the fabric and the morphology of P3HT coated cotton fabrics were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Thermal and mechanical studies revealed that after incorporation of P3HT, the fabrics preserved their original thermal stability and mechanical properties. Electrical resistivity measurements showed a decrease by several orders of magnitude in both surface and volume resistivities for cotton‐P3HT system relative to the untreated cotton. We also demonstrate that further significant improvement in electrical resistivity can be achieved by doping P3HT coated cotton with iodine. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><subject>Cotton</subject><subject>dip coating</subject><subject>doping</subject><subject>Electrical resistivity</subject><subject>electro‐conductive cotton</subject><subject>Fabrics</subject><subject>Fourier transforms</subject><subject>Immersion coating</subject><subject>Infrared spectroscopy</subject><subject>intrinsically conductive polymers</subject><subject>poly(3‐hexylthiophene)</subject><subject>Polymers</subject><subject>Scanning electron microscopy</subject><issn>1042-7147</issn><issn>1099-1581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoOI6Cj1BwMy465q9NuhyG8QcGdDHiMqRp4mToNDVp1e58BJ_RJzGjgiC4uod7v3u49wBwiuAUQYgvWtlNCc_YHhghWBQpyjja32mKU4YoOwRHIWwgjLOCjcDDotaq8-7j7V25pupVZ591YmTprQpJKYOuEtcklW0T5WRnm8fEmSi7LnZtk7SuHiYkbq_161B3a-vatW70-TE4MLIO-uSnjsH95WI1v06Xt1c389kyVQTnLFWFMpyojFLGJIIylzxnnDFScghzSkxZlplGRlJCS4YJLRDGjMsKGZZDo8kYTL59W--eeh06sbVB6bqWjXZ9EKiIj1Me_SN69gfduN438TqBOC8wzjijv4bKuxC8NqL1div9IBAUu4RFTFjsEo5o-o2-2FoP_3Librb64j8BP_B9Xg</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Cohen David, Nofar</creator><creator>David, Yaniv</creator><creator>Katz, Nathaniel</creator><creator>Milanovich, Michael</creator><creator>Anavi, Daniel</creator><creator>Buzhor, Marina</creator><creator>Amir, Elizabeth</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201705</creationdate><title>Electro‐conductive fabrics based on dip coating of cotton in poly(3‐hexylthiophene)</title><author>Cohen David, Nofar ; David, Yaniv ; Katz, Nathaniel ; Milanovich, Michael ; Anavi, Daniel ; Buzhor, Marina ; Amir, Elizabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3267-c9cf83c54477a10a6a8678773b800643fbbb5e1fa434b7234912278ad1f760fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cotton</topic><topic>dip coating</topic><topic>doping</topic><topic>Electrical resistivity</topic><topic>electro‐conductive cotton</topic><topic>Fabrics</topic><topic>Fourier transforms</topic><topic>Immersion coating</topic><topic>Infrared spectroscopy</topic><topic>intrinsically conductive polymers</topic><topic>poly(3‐hexylthiophene)</topic><topic>Polymers</topic><topic>Scanning electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen David, Nofar</creatorcontrib><creatorcontrib>David, Yaniv</creatorcontrib><creatorcontrib>Katz, Nathaniel</creatorcontrib><creatorcontrib>Milanovich, Michael</creatorcontrib><creatorcontrib>Anavi, Daniel</creatorcontrib><creatorcontrib>Buzhor, Marina</creatorcontrib><creatorcontrib>Amir, Elizabeth</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymers for advanced technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen David, Nofar</au><au>David, Yaniv</au><au>Katz, Nathaniel</au><au>Milanovich, Michael</au><au>Anavi, Daniel</au><au>Buzhor, Marina</au><au>Amir, Elizabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electro‐conductive fabrics based on dip coating of cotton in poly(3‐hexylthiophene)</atitle><jtitle>Polymers for advanced technologies</jtitle><date>2017-05</date><risdate>2017</risdate><volume>28</volume><issue>5</issue><spage>583</spage><epage>589</epage><pages>583-589</pages><issn>1042-7147</issn><eissn>1099-1581</eissn><coden>PADTE5</coden><abstract>Electro‐conductive cotton fabrics based on poly(3‐hexylthiophene) (P3HT) were prepared using dip coating processing technique. The effect of solvent type used for the preparation of P3HT solutions on the amount of polymer incorporated into the fabric and the morphology of P3HT coated cotton fabrics were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Thermal and mechanical studies revealed that after incorporation of P3HT, the fabrics preserved their original thermal stability and mechanical properties. Electrical resistivity measurements showed a decrease by several orders of magnitude in both surface and volume resistivities for cotton‐P3HT system relative to the untreated cotton. We also demonstrate that further significant improvement in electrical resistivity can be achieved by doping P3HT coated cotton with iodine. Copyright © 2016 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pat.3857</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1042-7147
ispartof Polymers for advanced technologies, 2017-05, Vol.28 (5), p.583-589
issn 1042-7147
1099-1581
language eng
recordid cdi_proquest_miscellaneous_1904248447
source Wiley
subjects Cotton
dip coating
doping
Electrical resistivity
electro‐conductive cotton
Fabrics
Fourier transforms
Immersion coating
Infrared spectroscopy
intrinsically conductive polymers
poly(3‐hexylthiophene)
Polymers
Scanning electron microscopy
title Electro‐conductive fabrics based on dip coating of cotton in poly(3‐hexylthiophene)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electro%E2%80%90conductive%20fabrics%20based%20on%20dip%20coating%20of%20cotton%20in%20poly(3%E2%80%90hexylthiophene)&rft.jtitle=Polymers%20for%20advanced%20technologies&rft.au=Cohen%20David,%20Nofar&rft.date=2017-05&rft.volume=28&rft.issue=5&rft.spage=583&rft.epage=589&rft.pages=583-589&rft.issn=1042-7147&rft.eissn=1099-1581&rft.coden=PADTE5&rft_id=info:doi/10.1002/pat.3857&rft_dat=%3Cproquest_cross%3E1904248447%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3267-c9cf83c54477a10a6a8678773b800643fbbb5e1fa434b7234912278ad1f760fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1889225874&rft_id=info:pmid/&rfr_iscdi=true