Loading…

Branching graphs for finite unitary groups in nondefining characteristic

We show that the modular branching rule (in the sense of Harish-Chandra) on unipotent modules for finite unitary groups is piecewise described by particular connected components of the crystal graph of well-chosen Fock spaces, under favorable conditions. Besides, we give the combinatorial formula to...

Full description

Saved in:
Bibliographic Details
Published in:Communications in algebra 2017-02, Vol.45 (2), p.561-574
Main Authors: Gerber, Thomas, Hiss, Gerhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-72e55d06b8adf3a681072c02240d04d24ac175c155b051e90e8e619163e4e2d3
cites cdi_FETCH-LOGICAL-c418t-72e55d06b8adf3a681072c02240d04d24ac175c155b051e90e8e619163e4e2d3
container_end_page 574
container_issue 2
container_start_page 561
container_title Communications in algebra
container_volume 45
creator Gerber, Thomas
Hiss, Gerhard
description We show that the modular branching rule (in the sense of Harish-Chandra) on unipotent modules for finite unitary groups is piecewise described by particular connected components of the crystal graph of well-chosen Fock spaces, under favorable conditions. Besides, we give the combinatorial formula to pass from one to the other in the case of modules arising from cuspidal modules of defect 0. This partly proves a recent conjecture of Jacon and the authors.
doi_str_mv 10.1080/00927872.2016.1175610
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904249679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904249679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-72e55d06b8adf3a681072c02240d04d24ac175c155b051e90e8e619163e4e2d3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwE5AisbCk3Dl24mx8CChSJZbulus4ravULnYi1H-Po5aFgeVuuOc93T2E3CLMEAQ8ANS0EhWdUcByhljxEuGMTJAXNGdI-TmZjEw-QpfkKsYtAPJK0AmZPwfl9Ma6dbYOar-JWetD1lpne5MNqapwSBM_7GNmXea8a8w4TbzeqKB0b4KNvdXX5KJVXTQ3pz4ly7fX5cs8X3y-f7w8LXLNUPR5RQ3nDZQroZq2UKVAqKgGShk0wBrKlE73a-R8BRxNDUaYEmssC8MMbYopuT-u3Qf_NZjYy52N2nSdcsYPUWINjLK6rOqE3v1Bt34ILh2XKFoACkBMFD9SOvgYg2nlPthd-loiyFGv_NUrR73ypDflHo8565Kxnfr2oWtkrw6dD-3o1EZZ_L_iB02ngAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923018011</pqid></control><display><type>article</type><title>Branching graphs for finite unitary groups in nondefining characteristic</title><source>Taylor and Francis Science and Technology Collection</source><creator>Gerber, Thomas ; Hiss, Gerhard</creator><creatorcontrib>Gerber, Thomas ; Hiss, Gerhard</creatorcontrib><description>We show that the modular branching rule (in the sense of Harish-Chandra) on unipotent modules for finite unitary groups is piecewise described by particular connected components of the crystal graph of well-chosen Fock spaces, under favorable conditions. Besides, we give the combinatorial formula to pass from one to the other in the case of modules arising from cuspidal modules of defect 0. This partly proves a recent conjecture of Jacon and the authors.</description><identifier>ISSN: 0092-7872</identifier><identifier>EISSN: 1532-4125</identifier><identifier>DOI: 10.1080/00927872.2016.1175610</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Algebra ; Branching graph ; Combinatorial analysis ; Crystal defects ; crystal graph ; Crystals ; endomorphism algebra ; Fock space ; Graphs ; Harish-Chandra series ; Iwahori-Hecke algebra ; Mathematical analysis ; Modules ; unitary group</subject><ispartof>Communications in algebra, 2017-02, Vol.45 (2), p.561-574</ispartof><rights>Copyright © Taylor &amp; Francis Group, LLC 2017</rights><rights>Copyright © Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-72e55d06b8adf3a681072c02240d04d24ac175c155b051e90e8e619163e4e2d3</citedby><cites>FETCH-LOGICAL-c418t-72e55d06b8adf3a681072c02240d04d24ac175c155b051e90e8e619163e4e2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gerber, Thomas</creatorcontrib><creatorcontrib>Hiss, Gerhard</creatorcontrib><title>Branching graphs for finite unitary groups in nondefining characteristic</title><title>Communications in algebra</title><description>We show that the modular branching rule (in the sense of Harish-Chandra) on unipotent modules for finite unitary groups is piecewise described by particular connected components of the crystal graph of well-chosen Fock spaces, under favorable conditions. Besides, we give the combinatorial formula to pass from one to the other in the case of modules arising from cuspidal modules of defect 0. This partly proves a recent conjecture of Jacon and the authors.</description><subject>Algebra</subject><subject>Branching graph</subject><subject>Combinatorial analysis</subject><subject>Crystal defects</subject><subject>crystal graph</subject><subject>Crystals</subject><subject>endomorphism algebra</subject><subject>Fock space</subject><subject>Graphs</subject><subject>Harish-Chandra series</subject><subject>Iwahori-Hecke algebra</subject><subject>Mathematical analysis</subject><subject>Modules</subject><subject>unitary group</subject><issn>0092-7872</issn><issn>1532-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwE5AisbCk3Dl24mx8CChSJZbulus4ravULnYi1H-Po5aFgeVuuOc93T2E3CLMEAQ8ANS0EhWdUcByhljxEuGMTJAXNGdI-TmZjEw-QpfkKsYtAPJK0AmZPwfl9Ma6dbYOar-JWetD1lpne5MNqapwSBM_7GNmXea8a8w4TbzeqKB0b4KNvdXX5KJVXTQ3pz4ly7fX5cs8X3y-f7w8LXLNUPR5RQ3nDZQroZq2UKVAqKgGShk0wBrKlE73a-R8BRxNDUaYEmssC8MMbYopuT-u3Qf_NZjYy52N2nSdcsYPUWINjLK6rOqE3v1Bt34ILh2XKFoACkBMFD9SOvgYg2nlPthd-loiyFGv_NUrR73ypDflHo8565Kxnfr2oWtkrw6dD-3o1EZZ_L_iB02ngAw</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Gerber, Thomas</creator><creator>Hiss, Gerhard</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170201</creationdate><title>Branching graphs for finite unitary groups in nondefining characteristic</title><author>Gerber, Thomas ; Hiss, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-72e55d06b8adf3a681072c02240d04d24ac175c155b051e90e8e619163e4e2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Branching graph</topic><topic>Combinatorial analysis</topic><topic>Crystal defects</topic><topic>crystal graph</topic><topic>Crystals</topic><topic>endomorphism algebra</topic><topic>Fock space</topic><topic>Graphs</topic><topic>Harish-Chandra series</topic><topic>Iwahori-Hecke algebra</topic><topic>Mathematical analysis</topic><topic>Modules</topic><topic>unitary group</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerber, Thomas</creatorcontrib><creatorcontrib>Hiss, Gerhard</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerber, Thomas</au><au>Hiss, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Branching graphs for finite unitary groups in nondefining characteristic</atitle><jtitle>Communications in algebra</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>45</volume><issue>2</issue><spage>561</spage><epage>574</epage><pages>561-574</pages><issn>0092-7872</issn><eissn>1532-4125</eissn><abstract>We show that the modular branching rule (in the sense of Harish-Chandra) on unipotent modules for finite unitary groups is piecewise described by particular connected components of the crystal graph of well-chosen Fock spaces, under favorable conditions. Besides, we give the combinatorial formula to pass from one to the other in the case of modules arising from cuspidal modules of defect 0. This partly proves a recent conjecture of Jacon and the authors.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00927872.2016.1175610</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-7872
ispartof Communications in algebra, 2017-02, Vol.45 (2), p.561-574
issn 0092-7872
1532-4125
language eng
recordid cdi_proquest_miscellaneous_1904249679
source Taylor and Francis Science and Technology Collection
subjects Algebra
Branching graph
Combinatorial analysis
Crystal defects
crystal graph
Crystals
endomorphism algebra
Fock space
Graphs
Harish-Chandra series
Iwahori-Hecke algebra
Mathematical analysis
Modules
unitary group
title Branching graphs for finite unitary groups in nondefining characteristic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Branching%20graphs%20for%20finite%20unitary%20groups%20in%20nondefining%20characteristic&rft.jtitle=Communications%20in%20algebra&rft.au=Gerber,%20Thomas&rft.date=2017-02-01&rft.volume=45&rft.issue=2&rft.spage=561&rft.epage=574&rft.pages=561-574&rft.issn=0092-7872&rft.eissn=1532-4125&rft_id=info:doi/10.1080/00927872.2016.1175610&rft_dat=%3Cproquest_infor%3E1904249679%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-72e55d06b8adf3a681072c02240d04d24ac175c155b051e90e8e619163e4e2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1923018011&rft_id=info:pmid/&rfr_iscdi=true