Loading…
Branching graphs for finite unitary groups in nondefining characteristic
We show that the modular branching rule (in the sense of Harish-Chandra) on unipotent modules for finite unitary groups is piecewise described by particular connected components of the crystal graph of well-chosen Fock spaces, under favorable conditions. Besides, we give the combinatorial formula to...
Saved in:
Published in: | Communications in algebra 2017-02, Vol.45 (2), p.561-574 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-72e55d06b8adf3a681072c02240d04d24ac175c155b051e90e8e619163e4e2d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-72e55d06b8adf3a681072c02240d04d24ac175c155b051e90e8e619163e4e2d3 |
container_end_page | 574 |
container_issue | 2 |
container_start_page | 561 |
container_title | Communications in algebra |
container_volume | 45 |
creator | Gerber, Thomas Hiss, Gerhard |
description | We show that the modular branching rule (in the sense of Harish-Chandra) on unipotent modules for finite unitary groups is piecewise described by particular connected components of the crystal graph of well-chosen Fock spaces, under favorable conditions. Besides, we give the combinatorial formula to pass from one to the other in the case of modules arising from cuspidal modules of defect 0. This partly proves a recent conjecture of Jacon and the authors. |
doi_str_mv | 10.1080/00927872.2016.1175610 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904249679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904249679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-72e55d06b8adf3a681072c02240d04d24ac175c155b051e90e8e619163e4e2d3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwE5AisbCk3Dl24mx8CChSJZbulus4ravULnYi1H-Po5aFgeVuuOc93T2E3CLMEAQ8ANS0EhWdUcByhljxEuGMTJAXNGdI-TmZjEw-QpfkKsYtAPJK0AmZPwfl9Ma6dbYOar-JWetD1lpne5MNqapwSBM_7GNmXea8a8w4TbzeqKB0b4KNvdXX5KJVXTQ3pz4ly7fX5cs8X3y-f7w8LXLNUPR5RQ3nDZQroZq2UKVAqKgGShk0wBrKlE73a-R8BRxNDUaYEmssC8MMbYopuT-u3Qf_NZjYy52N2nSdcsYPUWINjLK6rOqE3v1Bt34ILh2XKFoACkBMFD9SOvgYg2nlPthd-loiyFGv_NUrR73ypDflHo8565Kxnfr2oWtkrw6dD-3o1EZZ_L_iB02ngAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923018011</pqid></control><display><type>article</type><title>Branching graphs for finite unitary groups in nondefining characteristic</title><source>Taylor and Francis Science and Technology Collection</source><creator>Gerber, Thomas ; Hiss, Gerhard</creator><creatorcontrib>Gerber, Thomas ; Hiss, Gerhard</creatorcontrib><description>We show that the modular branching rule (in the sense of Harish-Chandra) on unipotent modules for finite unitary groups is piecewise described by particular connected components of the crystal graph of well-chosen Fock spaces, under favorable conditions. Besides, we give the combinatorial formula to pass from one to the other in the case of modules arising from cuspidal modules of defect 0. This partly proves a recent conjecture of Jacon and the authors.</description><identifier>ISSN: 0092-7872</identifier><identifier>EISSN: 1532-4125</identifier><identifier>DOI: 10.1080/00927872.2016.1175610</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Algebra ; Branching graph ; Combinatorial analysis ; Crystal defects ; crystal graph ; Crystals ; endomorphism algebra ; Fock space ; Graphs ; Harish-Chandra series ; Iwahori-Hecke algebra ; Mathematical analysis ; Modules ; unitary group</subject><ispartof>Communications in algebra, 2017-02, Vol.45 (2), p.561-574</ispartof><rights>Copyright © Taylor & Francis Group, LLC 2017</rights><rights>Copyright © Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-72e55d06b8adf3a681072c02240d04d24ac175c155b051e90e8e619163e4e2d3</citedby><cites>FETCH-LOGICAL-c418t-72e55d06b8adf3a681072c02240d04d24ac175c155b051e90e8e619163e4e2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gerber, Thomas</creatorcontrib><creatorcontrib>Hiss, Gerhard</creatorcontrib><title>Branching graphs for finite unitary groups in nondefining characteristic</title><title>Communications in algebra</title><description>We show that the modular branching rule (in the sense of Harish-Chandra) on unipotent modules for finite unitary groups is piecewise described by particular connected components of the crystal graph of well-chosen Fock spaces, under favorable conditions. Besides, we give the combinatorial formula to pass from one to the other in the case of modules arising from cuspidal modules of defect 0. This partly proves a recent conjecture of Jacon and the authors.</description><subject>Algebra</subject><subject>Branching graph</subject><subject>Combinatorial analysis</subject><subject>Crystal defects</subject><subject>crystal graph</subject><subject>Crystals</subject><subject>endomorphism algebra</subject><subject>Fock space</subject><subject>Graphs</subject><subject>Harish-Chandra series</subject><subject>Iwahori-Hecke algebra</subject><subject>Mathematical analysis</subject><subject>Modules</subject><subject>unitary group</subject><issn>0092-7872</issn><issn>1532-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwE5AisbCk3Dl24mx8CChSJZbulus4ravULnYi1H-Po5aFgeVuuOc93T2E3CLMEAQ8ANS0EhWdUcByhljxEuGMTJAXNGdI-TmZjEw-QpfkKsYtAPJK0AmZPwfl9Ma6dbYOar-JWetD1lpne5MNqapwSBM_7GNmXea8a8w4TbzeqKB0b4KNvdXX5KJVXTQ3pz4ly7fX5cs8X3y-f7w8LXLNUPR5RQ3nDZQroZq2UKVAqKgGShk0wBrKlE73a-R8BRxNDUaYEmssC8MMbYopuT-u3Qf_NZjYy52N2nSdcsYPUWINjLK6rOqE3v1Bt34ILh2XKFoACkBMFD9SOvgYg2nlPthd-loiyFGv_NUrR73ypDflHo8565Kxnfr2oWtkrw6dD-3o1EZZ_L_iB02ngAw</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Gerber, Thomas</creator><creator>Hiss, Gerhard</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170201</creationdate><title>Branching graphs for finite unitary groups in nondefining characteristic</title><author>Gerber, Thomas ; Hiss, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-72e55d06b8adf3a681072c02240d04d24ac175c155b051e90e8e619163e4e2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Branching graph</topic><topic>Combinatorial analysis</topic><topic>Crystal defects</topic><topic>crystal graph</topic><topic>Crystals</topic><topic>endomorphism algebra</topic><topic>Fock space</topic><topic>Graphs</topic><topic>Harish-Chandra series</topic><topic>Iwahori-Hecke algebra</topic><topic>Mathematical analysis</topic><topic>Modules</topic><topic>unitary group</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerber, Thomas</creatorcontrib><creatorcontrib>Hiss, Gerhard</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerber, Thomas</au><au>Hiss, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Branching graphs for finite unitary groups in nondefining characteristic</atitle><jtitle>Communications in algebra</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>45</volume><issue>2</issue><spage>561</spage><epage>574</epage><pages>561-574</pages><issn>0092-7872</issn><eissn>1532-4125</eissn><abstract>We show that the modular branching rule (in the sense of Harish-Chandra) on unipotent modules for finite unitary groups is piecewise described by particular connected components of the crystal graph of well-chosen Fock spaces, under favorable conditions. Besides, we give the combinatorial formula to pass from one to the other in the case of modules arising from cuspidal modules of defect 0. This partly proves a recent conjecture of Jacon and the authors.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/00927872.2016.1175610</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-7872 |
ispartof | Communications in algebra, 2017-02, Vol.45 (2), p.561-574 |
issn | 0092-7872 1532-4125 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904249679 |
source | Taylor and Francis Science and Technology Collection |
subjects | Algebra Branching graph Combinatorial analysis Crystal defects crystal graph Crystals endomorphism algebra Fock space Graphs Harish-Chandra series Iwahori-Hecke algebra Mathematical analysis Modules unitary group |
title | Branching graphs for finite unitary groups in nondefining characteristic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Branching%20graphs%20for%20finite%20unitary%20groups%20in%20nondefining%20characteristic&rft.jtitle=Communications%20in%20algebra&rft.au=Gerber,%20Thomas&rft.date=2017-02-01&rft.volume=45&rft.issue=2&rft.spage=561&rft.epage=574&rft.pages=561-574&rft.issn=0092-7872&rft.eissn=1532-4125&rft_id=info:doi/10.1080/00927872.2016.1175610&rft_dat=%3Cproquest_infor%3E1904249679%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-72e55d06b8adf3a681072c02240d04d24ac175c155b051e90e8e619163e4e2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1923018011&rft_id=info:pmid/&rfr_iscdi=true |