Loading…

The shape-memory effect in ionic elastomers: fixation through ionic interactions

Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named i...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2017, Vol.13 (16), p.2983-2994
Main Authors: González-Jiménez, Antonio, Malmierca, Marta A, Bernal-Ortega, Pilar, Posadas, Pilar, Pérez-Aparicio, Roberto, Marcos-Fernández, Ángel, Mather, Patrick T, Valentín, Juan L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c419t-3ced07f38b26080e7e8eecc6c5049d2d3edbfe941b211ff9d82bb23c67ed648a3
cites cdi_FETCH-LOGICAL-c419t-3ced07f38b26080e7e8eecc6c5049d2d3edbfe941b211ff9d82bb23c67ed648a3
container_end_page 2994
container_issue 16
container_start_page 2983
container_title Soft matter
container_volume 13
creator González-Jiménez, Antonio
Malmierca, Marta A
Bernal-Ortega, Pilar
Posadas, Pilar
Pérez-Aparicio, Roberto
Marcos-Fernández, Ángel
Mather, Patrick T
Valentín, Juan L
description Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers. These ionic interactions fix the temporary shape due to their behavior as dynamic cross-links with temperature changes. Covalent cross-links were incorporated with the addition of different proportions of dicumyl peroxide (DCP) to the ionic elastomer to establish and recover the permanent shape. In this article, the SME was modulated by modifying the degree of covalent cross-linking, while keeping the ionic contribution constant. In addition, different programming parameters, such as deformation temperature, heating/cooling rate, loading/unloading rate and percentage of tensile strain, were evaluated for their effects on shape-memory behavior.
doi_str_mv 10.1039/c7sm00104e
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904250302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904250302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-3ced07f38b26080e7e8eecc6c5049d2d3edbfe941b211ff9d82bb23c67ed648a3</originalsourceid><addsrcrecordid>eNqN0UtLw0AQB_BFFFurFz-A5ChCdPbRfXiTUh9QUbCCt5BsZk0kaepuAvbbm9raq55mmPkxh_kTckrhkgI3V1aFGoCCwD0ypEqIWGqh93c9fxuQoxA-ALgWVB6SAdNcqrFUQ_I8LzAKRbrEuMa68asInUPbRuUiKptFaSOs0tA2NfpwHbnyK237cdQWvuneiy0pFy361K434ZgcuLQKeLKtI_J6O51P7uPZ093D5GYWW0FNG3OLOSjHdcYkaECFGtFaaccgTM5yjnnm0AiaMUqdM7lmWca4lQpzKXTKR-R8c3fpm88OQ5vUZbBYVekCmy4k1IBgY-DA_qbaKK6NBPUPqvsfMqN5Ty821PomBI8uWfqyTv0qoZCsc0km6uXxJ5dpj8-2d7usxnxHf4Pg31RwiNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883842983</pqid></control><display><type>article</type><title>The shape-memory effect in ionic elastomers: fixation through ionic interactions</title><source>Royal Society of Chemistry</source><creator>González-Jiménez, Antonio ; Malmierca, Marta A ; Bernal-Ortega, Pilar ; Posadas, Pilar ; Pérez-Aparicio, Roberto ; Marcos-Fernández, Ángel ; Mather, Patrick T ; Valentín, Juan L</creator><creatorcontrib>González-Jiménez, Antonio ; Malmierca, Marta A ; Bernal-Ortega, Pilar ; Posadas, Pilar ; Pérez-Aparicio, Roberto ; Marcos-Fernández, Ángel ; Mather, Patrick T ; Valentín, Juan L</creatorcontrib><description>Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers. These ionic interactions fix the temporary shape due to their behavior as dynamic cross-links with temperature changes. Covalent cross-links were incorporated with the addition of different proportions of dicumyl peroxide (DCP) to the ionic elastomer to establish and recover the permanent shape. In this article, the SME was modulated by modifying the degree of covalent cross-linking, while keeping the ionic contribution constant. In addition, different programming parameters, such as deformation temperature, heating/cooling rate, loading/unloading rate and percentage of tensile strain, were evaluated for their effects on shape-memory behavior.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c7sm00104e</identifier><identifier>PMID: 28367567</identifier><language>eng</language><publisher>England</publisher><subject>Covalence ; Covalent bonds ; Crosslinking ; Elastomers ; Heating ; Ionic interactions ; Magnesium oxide ; Shape memory</subject><ispartof>Soft matter, 2017, Vol.13 (16), p.2983-2994</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-3ced07f38b26080e7e8eecc6c5049d2d3edbfe941b211ff9d82bb23c67ed648a3</citedby><cites>FETCH-LOGICAL-c419t-3ced07f38b26080e7e8eecc6c5049d2d3edbfe941b211ff9d82bb23c67ed648a3</cites><orcidid>0000-0002-3916-9060 ; 0000-0003-0692-1751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28367567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González-Jiménez, Antonio</creatorcontrib><creatorcontrib>Malmierca, Marta A</creatorcontrib><creatorcontrib>Bernal-Ortega, Pilar</creatorcontrib><creatorcontrib>Posadas, Pilar</creatorcontrib><creatorcontrib>Pérez-Aparicio, Roberto</creatorcontrib><creatorcontrib>Marcos-Fernández, Ángel</creatorcontrib><creatorcontrib>Mather, Patrick T</creatorcontrib><creatorcontrib>Valentín, Juan L</creatorcontrib><title>The shape-memory effect in ionic elastomers: fixation through ionic interactions</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers. These ionic interactions fix the temporary shape due to their behavior as dynamic cross-links with temperature changes. Covalent cross-links were incorporated with the addition of different proportions of dicumyl peroxide (DCP) to the ionic elastomer to establish and recover the permanent shape. In this article, the SME was modulated by modifying the degree of covalent cross-linking, while keeping the ionic contribution constant. In addition, different programming parameters, such as deformation temperature, heating/cooling rate, loading/unloading rate and percentage of tensile strain, were evaluated for their effects on shape-memory behavior.</description><subject>Covalence</subject><subject>Covalent bonds</subject><subject>Crosslinking</subject><subject>Elastomers</subject><subject>Heating</subject><subject>Ionic interactions</subject><subject>Magnesium oxide</subject><subject>Shape memory</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0UtLw0AQB_BFFFurFz-A5ChCdPbRfXiTUh9QUbCCt5BsZk0kaepuAvbbm9raq55mmPkxh_kTckrhkgI3V1aFGoCCwD0ypEqIWGqh93c9fxuQoxA-ALgWVB6SAdNcqrFUQ_I8LzAKRbrEuMa68asInUPbRuUiKptFaSOs0tA2NfpwHbnyK237cdQWvuneiy0pFy361K434ZgcuLQKeLKtI_J6O51P7uPZ093D5GYWW0FNG3OLOSjHdcYkaECFGtFaaccgTM5yjnnm0AiaMUqdM7lmWca4lQpzKXTKR-R8c3fpm88OQ5vUZbBYVekCmy4k1IBgY-DA_qbaKK6NBPUPqvsfMqN5Ty821PomBI8uWfqyTv0qoZCsc0km6uXxJ5dpj8-2d7usxnxHf4Pg31RwiNE</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>González-Jiménez, Antonio</creator><creator>Malmierca, Marta A</creator><creator>Bernal-Ortega, Pilar</creator><creator>Posadas, Pilar</creator><creator>Pérez-Aparicio, Roberto</creator><creator>Marcos-Fernández, Ángel</creator><creator>Mather, Patrick T</creator><creator>Valentín, Juan L</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3916-9060</orcidid><orcidid>https://orcid.org/0000-0003-0692-1751</orcidid></search><sort><creationdate>2017</creationdate><title>The shape-memory effect in ionic elastomers: fixation through ionic interactions</title><author>González-Jiménez, Antonio ; Malmierca, Marta A ; Bernal-Ortega, Pilar ; Posadas, Pilar ; Pérez-Aparicio, Roberto ; Marcos-Fernández, Ángel ; Mather, Patrick T ; Valentín, Juan L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-3ced07f38b26080e7e8eecc6c5049d2d3edbfe941b211ff9d82bb23c67ed648a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Covalence</topic><topic>Covalent bonds</topic><topic>Crosslinking</topic><topic>Elastomers</topic><topic>Heating</topic><topic>Ionic interactions</topic><topic>Magnesium oxide</topic><topic>Shape memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Jiménez, Antonio</creatorcontrib><creatorcontrib>Malmierca, Marta A</creatorcontrib><creatorcontrib>Bernal-Ortega, Pilar</creatorcontrib><creatorcontrib>Posadas, Pilar</creatorcontrib><creatorcontrib>Pérez-Aparicio, Roberto</creatorcontrib><creatorcontrib>Marcos-Fernández, Ángel</creatorcontrib><creatorcontrib>Mather, Patrick T</creatorcontrib><creatorcontrib>Valentín, Juan L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Jiménez, Antonio</au><au>Malmierca, Marta A</au><au>Bernal-Ortega, Pilar</au><au>Posadas, Pilar</au><au>Pérez-Aparicio, Roberto</au><au>Marcos-Fernández, Ángel</au><au>Mather, Patrick T</au><au>Valentín, Juan L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The shape-memory effect in ionic elastomers: fixation through ionic interactions</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2017</date><risdate>2017</risdate><volume>13</volume><issue>16</issue><spage>2983</spage><epage>2994</epage><pages>2983-2994</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers. These ionic interactions fix the temporary shape due to their behavior as dynamic cross-links with temperature changes. Covalent cross-links were incorporated with the addition of different proportions of dicumyl peroxide (DCP) to the ionic elastomer to establish and recover the permanent shape. In this article, the SME was modulated by modifying the degree of covalent cross-linking, while keeping the ionic contribution constant. In addition, different programming parameters, such as deformation temperature, heating/cooling rate, loading/unloading rate and percentage of tensile strain, were evaluated for their effects on shape-memory behavior.</abstract><cop>England</cop><pmid>28367567</pmid><doi>10.1039/c7sm00104e</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3916-9060</orcidid><orcidid>https://orcid.org/0000-0003-0692-1751</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2017, Vol.13 (16), p.2983-2994
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_1904250302
source Royal Society of Chemistry
subjects Covalence
Covalent bonds
Crosslinking
Elastomers
Heating
Ionic interactions
Magnesium oxide
Shape memory
title The shape-memory effect in ionic elastomers: fixation through ionic interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20shape-memory%20effect%20in%20ionic%20elastomers:%20fixation%20through%20ionic%20interactions&rft.jtitle=Soft%20matter&rft.au=Gonz%C3%A1lez-Jim%C3%A9nez,%20Antonio&rft.date=2017&rft.volume=13&rft.issue=16&rft.spage=2983&rft.epage=2994&rft.pages=2983-2994&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c7sm00104e&rft_dat=%3Cproquest_cross%3E1904250302%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-3ced07f38b26080e7e8eecc6c5049d2d3edbfe941b211ff9d82bb23c67ed648a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1883842983&rft_id=info:pmid/28367567&rfr_iscdi=true