Loading…
The shape-memory effect in ionic elastomers: fixation through ionic interactions
Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named i...
Saved in:
Published in: | Soft matter 2017, Vol.13 (16), p.2983-2994 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c419t-3ced07f38b26080e7e8eecc6c5049d2d3edbfe941b211ff9d82bb23c67ed648a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c419t-3ced07f38b26080e7e8eecc6c5049d2d3edbfe941b211ff9d82bb23c67ed648a3 |
container_end_page | 2994 |
container_issue | 16 |
container_start_page | 2983 |
container_title | Soft matter |
container_volume | 13 |
creator | González-Jiménez, Antonio Malmierca, Marta A Bernal-Ortega, Pilar Posadas, Pilar Pérez-Aparicio, Roberto Marcos-Fernández, Ángel Mather, Patrick T Valentín, Juan L |
description | Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers. These ionic interactions fix the temporary shape due to their behavior as dynamic cross-links with temperature changes. Covalent cross-links were incorporated with the addition of different proportions of dicumyl peroxide (DCP) to the ionic elastomer to establish and recover the permanent shape. In this article, the SME was modulated by modifying the degree of covalent cross-linking, while keeping the ionic contribution constant. In addition, different programming parameters, such as deformation temperature, heating/cooling rate, loading/unloading rate and percentage of tensile strain, were evaluated for their effects on shape-memory behavior. |
doi_str_mv | 10.1039/c7sm00104e |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904250302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904250302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-3ced07f38b26080e7e8eecc6c5049d2d3edbfe941b211ff9d82bb23c67ed648a3</originalsourceid><addsrcrecordid>eNqN0UtLw0AQB_BFFFurFz-A5ChCdPbRfXiTUh9QUbCCt5BsZk0kaepuAvbbm9raq55mmPkxh_kTckrhkgI3V1aFGoCCwD0ypEqIWGqh93c9fxuQoxA-ALgWVB6SAdNcqrFUQ_I8LzAKRbrEuMa68asInUPbRuUiKptFaSOs0tA2NfpwHbnyK237cdQWvuneiy0pFy361K434ZgcuLQKeLKtI_J6O51P7uPZ093D5GYWW0FNG3OLOSjHdcYkaECFGtFaaccgTM5yjnnm0AiaMUqdM7lmWca4lQpzKXTKR-R8c3fpm88OQ5vUZbBYVekCmy4k1IBgY-DA_qbaKK6NBPUPqvsfMqN5Ty821PomBI8uWfqyTv0qoZCsc0km6uXxJ5dpj8-2d7usxnxHf4Pg31RwiNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883842983</pqid></control><display><type>article</type><title>The shape-memory effect in ionic elastomers: fixation through ionic interactions</title><source>Royal Society of Chemistry</source><creator>González-Jiménez, Antonio ; Malmierca, Marta A ; Bernal-Ortega, Pilar ; Posadas, Pilar ; Pérez-Aparicio, Roberto ; Marcos-Fernández, Ángel ; Mather, Patrick T ; Valentín, Juan L</creator><creatorcontrib>González-Jiménez, Antonio ; Malmierca, Marta A ; Bernal-Ortega, Pilar ; Posadas, Pilar ; Pérez-Aparicio, Roberto ; Marcos-Fernández, Ángel ; Mather, Patrick T ; Valentín, Juan L</creatorcontrib><description>Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers. These ionic interactions fix the temporary shape due to their behavior as dynamic cross-links with temperature changes. Covalent cross-links were incorporated with the addition of different proportions of dicumyl peroxide (DCP) to the ionic elastomer to establish and recover the permanent shape. In this article, the SME was modulated by modifying the degree of covalent cross-linking, while keeping the ionic contribution constant. In addition, different programming parameters, such as deformation temperature, heating/cooling rate, loading/unloading rate and percentage of tensile strain, were evaluated for their effects on shape-memory behavior.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c7sm00104e</identifier><identifier>PMID: 28367567</identifier><language>eng</language><publisher>England</publisher><subject>Covalence ; Covalent bonds ; Crosslinking ; Elastomers ; Heating ; Ionic interactions ; Magnesium oxide ; Shape memory</subject><ispartof>Soft matter, 2017, Vol.13 (16), p.2983-2994</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-3ced07f38b26080e7e8eecc6c5049d2d3edbfe941b211ff9d82bb23c67ed648a3</citedby><cites>FETCH-LOGICAL-c419t-3ced07f38b26080e7e8eecc6c5049d2d3edbfe941b211ff9d82bb23c67ed648a3</cites><orcidid>0000-0002-3916-9060 ; 0000-0003-0692-1751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28367567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González-Jiménez, Antonio</creatorcontrib><creatorcontrib>Malmierca, Marta A</creatorcontrib><creatorcontrib>Bernal-Ortega, Pilar</creatorcontrib><creatorcontrib>Posadas, Pilar</creatorcontrib><creatorcontrib>Pérez-Aparicio, Roberto</creatorcontrib><creatorcontrib>Marcos-Fernández, Ángel</creatorcontrib><creatorcontrib>Mather, Patrick T</creatorcontrib><creatorcontrib>Valentín, Juan L</creatorcontrib><title>The shape-memory effect in ionic elastomers: fixation through ionic interactions</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers. These ionic interactions fix the temporary shape due to their behavior as dynamic cross-links with temperature changes. Covalent cross-links were incorporated with the addition of different proportions of dicumyl peroxide (DCP) to the ionic elastomer to establish and recover the permanent shape. In this article, the SME was modulated by modifying the degree of covalent cross-linking, while keeping the ionic contribution constant. In addition, different programming parameters, such as deformation temperature, heating/cooling rate, loading/unloading rate and percentage of tensile strain, were evaluated for their effects on shape-memory behavior.</description><subject>Covalence</subject><subject>Covalent bonds</subject><subject>Crosslinking</subject><subject>Elastomers</subject><subject>Heating</subject><subject>Ionic interactions</subject><subject>Magnesium oxide</subject><subject>Shape memory</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0UtLw0AQB_BFFFurFz-A5ChCdPbRfXiTUh9QUbCCt5BsZk0kaepuAvbbm9raq55mmPkxh_kTckrhkgI3V1aFGoCCwD0ypEqIWGqh93c9fxuQoxA-ALgWVB6SAdNcqrFUQ_I8LzAKRbrEuMa68asInUPbRuUiKptFaSOs0tA2NfpwHbnyK237cdQWvuneiy0pFy361K434ZgcuLQKeLKtI_J6O51P7uPZ093D5GYWW0FNG3OLOSjHdcYkaECFGtFaaccgTM5yjnnm0AiaMUqdM7lmWca4lQpzKXTKR-R8c3fpm88OQ5vUZbBYVekCmy4k1IBgY-DA_qbaKK6NBPUPqvsfMqN5Ty821PomBI8uWfqyTv0qoZCsc0km6uXxJ5dpj8-2d7usxnxHf4Pg31RwiNE</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>González-Jiménez, Antonio</creator><creator>Malmierca, Marta A</creator><creator>Bernal-Ortega, Pilar</creator><creator>Posadas, Pilar</creator><creator>Pérez-Aparicio, Roberto</creator><creator>Marcos-Fernández, Ángel</creator><creator>Mather, Patrick T</creator><creator>Valentín, Juan L</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3916-9060</orcidid><orcidid>https://orcid.org/0000-0003-0692-1751</orcidid></search><sort><creationdate>2017</creationdate><title>The shape-memory effect in ionic elastomers: fixation through ionic interactions</title><author>González-Jiménez, Antonio ; Malmierca, Marta A ; Bernal-Ortega, Pilar ; Posadas, Pilar ; Pérez-Aparicio, Roberto ; Marcos-Fernández, Ángel ; Mather, Patrick T ; Valentín, Juan L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-3ced07f38b26080e7e8eecc6c5049d2d3edbfe941b211ff9d82bb23c67ed648a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Covalence</topic><topic>Covalent bonds</topic><topic>Crosslinking</topic><topic>Elastomers</topic><topic>Heating</topic><topic>Ionic interactions</topic><topic>Magnesium oxide</topic><topic>Shape memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Jiménez, Antonio</creatorcontrib><creatorcontrib>Malmierca, Marta A</creatorcontrib><creatorcontrib>Bernal-Ortega, Pilar</creatorcontrib><creatorcontrib>Posadas, Pilar</creatorcontrib><creatorcontrib>Pérez-Aparicio, Roberto</creatorcontrib><creatorcontrib>Marcos-Fernández, Ángel</creatorcontrib><creatorcontrib>Mather, Patrick T</creatorcontrib><creatorcontrib>Valentín, Juan L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Jiménez, Antonio</au><au>Malmierca, Marta A</au><au>Bernal-Ortega, Pilar</au><au>Posadas, Pilar</au><au>Pérez-Aparicio, Roberto</au><au>Marcos-Fernández, Ángel</au><au>Mather, Patrick T</au><au>Valentín, Juan L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The shape-memory effect in ionic elastomers: fixation through ionic interactions</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2017</date><risdate>2017</risdate><volume>13</volume><issue>16</issue><spage>2983</spage><epage>2994</epage><pages>2983-2994</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers. These ionic interactions fix the temporary shape due to their behavior as dynamic cross-links with temperature changes. Covalent cross-links were incorporated with the addition of different proportions of dicumyl peroxide (DCP) to the ionic elastomer to establish and recover the permanent shape. In this article, the SME was modulated by modifying the degree of covalent cross-linking, while keeping the ionic contribution constant. In addition, different programming parameters, such as deformation temperature, heating/cooling rate, loading/unloading rate and percentage of tensile strain, were evaluated for their effects on shape-memory behavior.</abstract><cop>England</cop><pmid>28367567</pmid><doi>10.1039/c7sm00104e</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3916-9060</orcidid><orcidid>https://orcid.org/0000-0003-0692-1751</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2017, Vol.13 (16), p.2983-2994 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904250302 |
source | Royal Society of Chemistry |
subjects | Covalence Covalent bonds Crosslinking Elastomers Heating Ionic interactions Magnesium oxide Shape memory |
title | The shape-memory effect in ionic elastomers: fixation through ionic interactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20shape-memory%20effect%20in%20ionic%20elastomers:%20fixation%20through%20ionic%20interactions&rft.jtitle=Soft%20matter&rft.au=Gonz%C3%A1lez-Jim%C3%A9nez,%20Antonio&rft.date=2017&rft.volume=13&rft.issue=16&rft.spage=2983&rft.epage=2994&rft.pages=2983-2994&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c7sm00104e&rft_dat=%3Cproquest_cross%3E1904250302%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-3ced07f38b26080e7e8eecc6c5049d2d3edbfe941b211ff9d82bb23c67ed648a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1883842983&rft_id=info:pmid/28367567&rfr_iscdi=true |