Loading…

An intercomparison of long‐term planetary boundary layer heights retrieved from CALIPSO, ground‐based lidar, and radiosonde measurements over Hong Kong

The planetary boundary layer height (PBLH) is a very important parameter in the atmosphere, because it determines the range where the most effective dispersion processes take place, and serves as a constraint on the vertical transport of heat, moisture, and pollutants. As the only space‐borne lidar,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Atmospheres 2017-04, Vol.122 (7), p.3929-3943
Main Authors: Su, Tianning, Li, Jing, Li, Chengcai, Xiang, Pengzhan, Lau, Alexis Kai‐Hon, Guo, Jianping, Yang, Dongwei, Miao, Yucong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4676-b7e334fe8744ba2c0290d69b1eadc2c059704e09b884cb35d6e4be1ec4fa55cf3
cites cdi_FETCH-LOGICAL-c4676-b7e334fe8744ba2c0290d69b1eadc2c059704e09b884cb35d6e4be1ec4fa55cf3
container_end_page 3943
container_issue 7
container_start_page 3929
container_title Journal of geophysical research. Atmospheres
container_volume 122
creator Su, Tianning
Li, Jing
Li, Chengcai
Xiang, Pengzhan
Lau, Alexis Kai‐Hon
Guo, Jianping
Yang, Dongwei
Miao, Yucong
description The planetary boundary layer height (PBLH) is a very important parameter in the atmosphere, because it determines the range where the most effective dispersion processes take place, and serves as a constraint on the vertical transport of heat, moisture, and pollutants. As the only space‐borne lidar, Cloud‐Aerosol Lidar with Orthogonal Polarization onboard Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measures the vertical distribution of aerosol signals and thus offers the potential to retrieve large‐scale PBLH climatology. In this study, we explore different techniques for retrieving PBLH from CALIPSO measurements and validate the results against those obtained from ground‐based micropulse lidar (MPL) and radiosonde (RS) data over Hong Kong, where long‐term MPL and RS measurements are available. Two methods, namely maximum standard deviation (MSD) and wavelet covariance transform (WCT), are used to retrieve PBLH from CALIPSO. Results show that the RS‐ and MPL‐derived PBLHs share similar interannual variation and seasonality and can complement each other. Both MSD and WCT perform reasonably well compared with MPL/RS products, especially under sufficient aerosol loading. Uncertainties increase when aerosol loading is low and the CALIPSO signal consequently becomes noisier. Overall, CALIPSO captures the general PBLH seasonal variability over Hong Kong, despite a high bias in spring and a low bias in summer. The spring high bias is likely associated with elevated aerosol layers due to transport, while the summer low bias can be attributed to higher noise level associated with weaker aerosol signal. Key Points CALIPSO data demonstrated good performance in estimating PBLH, and WCT appears to be a suitable technique CALIPSO results best agree with MPL and RS for winter and fall when aerosol loading is relatively high Elevated aerosol layers in spring and low aerosol loadings in summer are likely causes for the bias in CALIPSO PBLH
doi_str_mv 10.1002/2016JD025937
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904250306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904250306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4676-b7e334fe8744ba2c0290d69b1eadc2c059704e09b884cb35d6e4be1ec4fa55cf3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEElXprg9giQ2LGfB_7GXV0j8qFRUqsYsc52bqKrEHOymaHY_AnrfjSbijQQixaL2wr-3P5-j6VNUho28Zpfwdp0xfnlCurKifVXucabs01urnf-v6y8vqoJR7isNQIZXcq34eRRLiBNmnce1yKCmS1JMhxdWv7z_wfCTrwUWYXN6QNs2x2xaD20AmdxBWd1MhGaYc4AE60uc0kuOjq4uPn64XZJW3PMq0ruDlEPDtgrjYkey6kNCqAzKCK3OGESIqpQeUPUdv8gGnV9WL3g0FDv6s-9Xt6fvPx-fLq-uzC3RZeqlrvWxrEEL2YGopW8c95ZZ22rYMXOdxq2xNJVDbGiN9K1SnQbbAwMveKeV7sV-92emuc_o6Q5maMRQPw7bvNJeGWSq5ooLqp1H8ZWG4sRzR1_-h92nOERtBQaaEpprRRyljmTE1BoXUYkf5nErJ0DfrHEZMomG02abf_Js-4mKHfwsDbB5lm8uzmxMlaq7Fb641sys</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891887034</pqid></control><display><type>article</type><title>An intercomparison of long‐term planetary boundary layer heights retrieved from CALIPSO, ground‐based lidar, and radiosonde measurements over Hong Kong</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Alma/SFX Local Collection</source><creator>Su, Tianning ; Li, Jing ; Li, Chengcai ; Xiang, Pengzhan ; Lau, Alexis Kai‐Hon ; Guo, Jianping ; Yang, Dongwei ; Miao, Yucong</creator><creatorcontrib>Su, Tianning ; Li, Jing ; Li, Chengcai ; Xiang, Pengzhan ; Lau, Alexis Kai‐Hon ; Guo, Jianping ; Yang, Dongwei ; Miao, Yucong</creatorcontrib><description>The planetary boundary layer height (PBLH) is a very important parameter in the atmosphere, because it determines the range where the most effective dispersion processes take place, and serves as a constraint on the vertical transport of heat, moisture, and pollutants. As the only space‐borne lidar, Cloud‐Aerosol Lidar with Orthogonal Polarization onboard Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measures the vertical distribution of aerosol signals and thus offers the potential to retrieve large‐scale PBLH climatology. In this study, we explore different techniques for retrieving PBLH from CALIPSO measurements and validate the results against those obtained from ground‐based micropulse lidar (MPL) and radiosonde (RS) data over Hong Kong, where long‐term MPL and RS measurements are available. Two methods, namely maximum standard deviation (MSD) and wavelet covariance transform (WCT), are used to retrieve PBLH from CALIPSO. Results show that the RS‐ and MPL‐derived PBLHs share similar interannual variation and seasonality and can complement each other. Both MSD and WCT perform reasonably well compared with MPL/RS products, especially under sufficient aerosol loading. Uncertainties increase when aerosol loading is low and the CALIPSO signal consequently becomes noisier. Overall, CALIPSO captures the general PBLH seasonal variability over Hong Kong, despite a high bias in spring and a low bias in summer. The spring high bias is likely associated with elevated aerosol layers due to transport, while the summer low bias can be attributed to higher noise level associated with weaker aerosol signal. Key Points CALIPSO data demonstrated good performance in estimating PBLH, and WCT appears to be a suitable technique CALIPSO results best agree with MPL and RS for winter and fall when aerosol loading is relatively high Elevated aerosol layers in spring and low aerosol loadings in summer are likely causes for the bias in CALIPSO PBLH</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2016JD025937</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Aerosol layers ; Aerosols ; Airborne particulates ; Atmosphere ; Bias ; Boundary layer height ; Boundary layers ; CALIPSO (Pathfinder satellite) ; CALIPSO space lidar ; Climatology ; Covariance ; Dispersion ; Dispersion processes ; Geophysics ; Heat ; Height ; Intercomparison ; Lidar ; Lidar measurements ; maximum standard deviation method ; Meteorological satellites ; Methods ; micropulse lidar ; Moisture ; Noise ; Noise levels ; Onboard ; Planetary boundary layer ; planetary boundary layer height ; Polarization ; Pollutants ; Pollution dispersion ; Products ; radiosonde ; Radiosondes ; Satellite observation ; Satellites ; Seasonal variability ; Seasonal variation ; Seasonal variations ; Seasonality ; Spring ; Spring (season) ; Summer ; Transport ; Variability ; Vertical advection ; Vertical distribution ; Wavelet analysis ; wavelet covariance transform method ; Winter</subject><ispartof>Journal of geophysical research. Atmospheres, 2017-04, Vol.122 (7), p.3929-3943</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4676-b7e334fe8744ba2c0290d69b1eadc2c059704e09b884cb35d6e4be1ec4fa55cf3</citedby><cites>FETCH-LOGICAL-c4676-b7e334fe8744ba2c0290d69b1eadc2c059704e09b884cb35d6e4be1ec4fa55cf3</cites><orcidid>0000-0001-8530-8976 ; 0000-0002-0540-0412 ; 0000-0001-8860-1916 ; 0000-0003-3056-2592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Su, Tianning</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Li, Chengcai</creatorcontrib><creatorcontrib>Xiang, Pengzhan</creatorcontrib><creatorcontrib>Lau, Alexis Kai‐Hon</creatorcontrib><creatorcontrib>Guo, Jianping</creatorcontrib><creatorcontrib>Yang, Dongwei</creatorcontrib><creatorcontrib>Miao, Yucong</creatorcontrib><title>An intercomparison of long‐term planetary boundary layer heights retrieved from CALIPSO, ground‐based lidar, and radiosonde measurements over Hong Kong</title><title>Journal of geophysical research. Atmospheres</title><description>The planetary boundary layer height (PBLH) is a very important parameter in the atmosphere, because it determines the range where the most effective dispersion processes take place, and serves as a constraint on the vertical transport of heat, moisture, and pollutants. As the only space‐borne lidar, Cloud‐Aerosol Lidar with Orthogonal Polarization onboard Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measures the vertical distribution of aerosol signals and thus offers the potential to retrieve large‐scale PBLH climatology. In this study, we explore different techniques for retrieving PBLH from CALIPSO measurements and validate the results against those obtained from ground‐based micropulse lidar (MPL) and radiosonde (RS) data over Hong Kong, where long‐term MPL and RS measurements are available. Two methods, namely maximum standard deviation (MSD) and wavelet covariance transform (WCT), are used to retrieve PBLH from CALIPSO. Results show that the RS‐ and MPL‐derived PBLHs share similar interannual variation and seasonality and can complement each other. Both MSD and WCT perform reasonably well compared with MPL/RS products, especially under sufficient aerosol loading. Uncertainties increase when aerosol loading is low and the CALIPSO signal consequently becomes noisier. Overall, CALIPSO captures the general PBLH seasonal variability over Hong Kong, despite a high bias in spring and a low bias in summer. The spring high bias is likely associated with elevated aerosol layers due to transport, while the summer low bias can be attributed to higher noise level associated with weaker aerosol signal. Key Points CALIPSO data demonstrated good performance in estimating PBLH, and WCT appears to be a suitable technique CALIPSO results best agree with MPL and RS for winter and fall when aerosol loading is relatively high Elevated aerosol layers in spring and low aerosol loadings in summer are likely causes for the bias in CALIPSO PBLH</description><subject>Aerosol layers</subject><subject>Aerosols</subject><subject>Airborne particulates</subject><subject>Atmosphere</subject><subject>Bias</subject><subject>Boundary layer height</subject><subject>Boundary layers</subject><subject>CALIPSO (Pathfinder satellite)</subject><subject>CALIPSO space lidar</subject><subject>Climatology</subject><subject>Covariance</subject><subject>Dispersion</subject><subject>Dispersion processes</subject><subject>Geophysics</subject><subject>Heat</subject><subject>Height</subject><subject>Intercomparison</subject><subject>Lidar</subject><subject>Lidar measurements</subject><subject>maximum standard deviation method</subject><subject>Meteorological satellites</subject><subject>Methods</subject><subject>micropulse lidar</subject><subject>Moisture</subject><subject>Noise</subject><subject>Noise levels</subject><subject>Onboard</subject><subject>Planetary boundary layer</subject><subject>planetary boundary layer height</subject><subject>Polarization</subject><subject>Pollutants</subject><subject>Pollution dispersion</subject><subject>Products</subject><subject>radiosonde</subject><subject>Radiosondes</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Seasonal variability</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Seasonality</subject><subject>Spring</subject><subject>Spring (season)</subject><subject>Summer</subject><subject>Transport</subject><subject>Variability</subject><subject>Vertical advection</subject><subject>Vertical distribution</subject><subject>Wavelet analysis</subject><subject>wavelet covariance transform method</subject><subject>Winter</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhSMEElXprg9giQ2LGfB_7GXV0j8qFRUqsYsc52bqKrEHOymaHY_AnrfjSbijQQixaL2wr-3P5-j6VNUho28Zpfwdp0xfnlCurKifVXucabs01urnf-v6y8vqoJR7isNQIZXcq34eRRLiBNmnce1yKCmS1JMhxdWv7z_wfCTrwUWYXN6QNs2x2xaD20AmdxBWd1MhGaYc4AE60uc0kuOjq4uPn64XZJW3PMq0ruDlEPDtgrjYkey6kNCqAzKCK3OGESIqpQeUPUdv8gGnV9WL3g0FDv6s-9Xt6fvPx-fLq-uzC3RZeqlrvWxrEEL2YGopW8c95ZZ22rYMXOdxq2xNJVDbGiN9K1SnQbbAwMveKeV7sV-92emuc_o6Q5maMRQPw7bvNJeGWSq5ooLqp1H8ZWG4sRzR1_-h92nOERtBQaaEpprRRyljmTE1BoXUYkf5nErJ0DfrHEZMomG02abf_Js-4mKHfwsDbB5lm8uzmxMlaq7Fb641sys</recordid><startdate>20170416</startdate><enddate>20170416</enddate><creator>Su, Tianning</creator><creator>Li, Jing</creator><creator>Li, Chengcai</creator><creator>Xiang, Pengzhan</creator><creator>Lau, Alexis Kai‐Hon</creator><creator>Guo, Jianping</creator><creator>Yang, Dongwei</creator><creator>Miao, Yucong</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8530-8976</orcidid><orcidid>https://orcid.org/0000-0002-0540-0412</orcidid><orcidid>https://orcid.org/0000-0001-8860-1916</orcidid><orcidid>https://orcid.org/0000-0003-3056-2592</orcidid></search><sort><creationdate>20170416</creationdate><title>An intercomparison of long‐term planetary boundary layer heights retrieved from CALIPSO, ground‐based lidar, and radiosonde measurements over Hong Kong</title><author>Su, Tianning ; Li, Jing ; Li, Chengcai ; Xiang, Pengzhan ; Lau, Alexis Kai‐Hon ; Guo, Jianping ; Yang, Dongwei ; Miao, Yucong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4676-b7e334fe8744ba2c0290d69b1eadc2c059704e09b884cb35d6e4be1ec4fa55cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerosol layers</topic><topic>Aerosols</topic><topic>Airborne particulates</topic><topic>Atmosphere</topic><topic>Bias</topic><topic>Boundary layer height</topic><topic>Boundary layers</topic><topic>CALIPSO (Pathfinder satellite)</topic><topic>CALIPSO space lidar</topic><topic>Climatology</topic><topic>Covariance</topic><topic>Dispersion</topic><topic>Dispersion processes</topic><topic>Geophysics</topic><topic>Heat</topic><topic>Height</topic><topic>Intercomparison</topic><topic>Lidar</topic><topic>Lidar measurements</topic><topic>maximum standard deviation method</topic><topic>Meteorological satellites</topic><topic>Methods</topic><topic>micropulse lidar</topic><topic>Moisture</topic><topic>Noise</topic><topic>Noise levels</topic><topic>Onboard</topic><topic>Planetary boundary layer</topic><topic>planetary boundary layer height</topic><topic>Polarization</topic><topic>Pollutants</topic><topic>Pollution dispersion</topic><topic>Products</topic><topic>radiosonde</topic><topic>Radiosondes</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Seasonal variability</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Seasonality</topic><topic>Spring</topic><topic>Spring (season)</topic><topic>Summer</topic><topic>Transport</topic><topic>Variability</topic><topic>Vertical advection</topic><topic>Vertical distribution</topic><topic>Wavelet analysis</topic><topic>wavelet covariance transform method</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Tianning</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Li, Chengcai</creatorcontrib><creatorcontrib>Xiang, Pengzhan</creatorcontrib><creatorcontrib>Lau, Alexis Kai‐Hon</creatorcontrib><creatorcontrib>Guo, Jianping</creatorcontrib><creatorcontrib>Yang, Dongwei</creatorcontrib><creatorcontrib>Miao, Yucong</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Tianning</au><au>Li, Jing</au><au>Li, Chengcai</au><au>Xiang, Pengzhan</au><au>Lau, Alexis Kai‐Hon</au><au>Guo, Jianping</au><au>Yang, Dongwei</au><au>Miao, Yucong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intercomparison of long‐term planetary boundary layer heights retrieved from CALIPSO, ground‐based lidar, and radiosonde measurements over Hong Kong</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2017-04-16</date><risdate>2017</risdate><volume>122</volume><issue>7</issue><spage>3929</spage><epage>3943</epage><pages>3929-3943</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>The planetary boundary layer height (PBLH) is a very important parameter in the atmosphere, because it determines the range where the most effective dispersion processes take place, and serves as a constraint on the vertical transport of heat, moisture, and pollutants. As the only space‐borne lidar, Cloud‐Aerosol Lidar with Orthogonal Polarization onboard Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measures the vertical distribution of aerosol signals and thus offers the potential to retrieve large‐scale PBLH climatology. In this study, we explore different techniques for retrieving PBLH from CALIPSO measurements and validate the results against those obtained from ground‐based micropulse lidar (MPL) and radiosonde (RS) data over Hong Kong, where long‐term MPL and RS measurements are available. Two methods, namely maximum standard deviation (MSD) and wavelet covariance transform (WCT), are used to retrieve PBLH from CALIPSO. Results show that the RS‐ and MPL‐derived PBLHs share similar interannual variation and seasonality and can complement each other. Both MSD and WCT perform reasonably well compared with MPL/RS products, especially under sufficient aerosol loading. Uncertainties increase when aerosol loading is low and the CALIPSO signal consequently becomes noisier. Overall, CALIPSO captures the general PBLH seasonal variability over Hong Kong, despite a high bias in spring and a low bias in summer. The spring high bias is likely associated with elevated aerosol layers due to transport, while the summer low bias can be attributed to higher noise level associated with weaker aerosol signal. Key Points CALIPSO data demonstrated good performance in estimating PBLH, and WCT appears to be a suitable technique CALIPSO results best agree with MPL and RS for winter and fall when aerosol loading is relatively high Elevated aerosol layers in spring and low aerosol loadings in summer are likely causes for the bias in CALIPSO PBLH</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JD025937</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8530-8976</orcidid><orcidid>https://orcid.org/0000-0002-0540-0412</orcidid><orcidid>https://orcid.org/0000-0001-8860-1916</orcidid><orcidid>https://orcid.org/0000-0003-3056-2592</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2017-04, Vol.122 (7), p.3929-3943
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_miscellaneous_1904250306
source Wiley-Blackwell Read & Publish Collection; Alma/SFX Local Collection
subjects Aerosol layers
Aerosols
Airborne particulates
Atmosphere
Bias
Boundary layer height
Boundary layers
CALIPSO (Pathfinder satellite)
CALIPSO space lidar
Climatology
Covariance
Dispersion
Dispersion processes
Geophysics
Heat
Height
Intercomparison
Lidar
Lidar measurements
maximum standard deviation method
Meteorological satellites
Methods
micropulse lidar
Moisture
Noise
Noise levels
Onboard
Planetary boundary layer
planetary boundary layer height
Polarization
Pollutants
Pollution dispersion
Products
radiosonde
Radiosondes
Satellite observation
Satellites
Seasonal variability
Seasonal variation
Seasonal variations
Seasonality
Spring
Spring (season)
Summer
Transport
Variability
Vertical advection
Vertical distribution
Wavelet analysis
wavelet covariance transform method
Winter
title An intercomparison of long‐term planetary boundary layer heights retrieved from CALIPSO, ground‐based lidar, and radiosonde measurements over Hong Kong
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intercomparison%20of%20long%E2%80%90term%20planetary%20boundary%20layer%20heights%20retrieved%20from%20CALIPSO,%20ground%E2%80%90based%20lidar,%20and%20radiosonde%20measurements%20over%20Hong%20Kong&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Su,%20Tianning&rft.date=2017-04-16&rft.volume=122&rft.issue=7&rft.spage=3929&rft.epage=3943&rft.pages=3929-3943&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2016JD025937&rft_dat=%3Cproquest_cross%3E1904250306%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4676-b7e334fe8744ba2c0290d69b1eadc2c059704e09b884cb35d6e4be1ec4fa55cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1891887034&rft_id=info:pmid/&rfr_iscdi=true