Loading…
Analysis of a custom support vector machine for photometric redshift estimation and the inclusion of galaxy shape information
Aims. We present a custom support vector machine classification package for photometric redshift estimation, including comparisons with other methods. We also explore the efficacy of including galaxy shape information in redshift estimation. Support vector machines, a type of machine learning, utili...
Saved in:
Published in: | Astronomy and astrophysics (Berlin) 2017-04, Vol.600, p.A113 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c398t-14b8092f342511f23a19b713ef34d6e137c5fa0159361a2db42960454a03bb1b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c398t-14b8092f342511f23a19b713ef34d6e137c5fa0159361a2db42960454a03bb1b3 |
container_end_page | |
container_issue | |
container_start_page | A113 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 600 |
creator | Jones, E. Singal, J. |
description | Aims. We present a custom support vector machine classification package for photometric redshift estimation, including comparisons with other methods. We also explore the efficacy of including galaxy shape information in redshift estimation. Support vector machines, a type of machine learning, utilize optimization theory and supervised learning algorithms to construct predictive models based on the information content of data in a way that can treat different input features symmetrically, which can be a useful estimator of the information contained in additional features beyond photometry, such as those describing the morphology of galaxies. Methods. The custom support vector machine package we have developed is designated SPIDERz and made available to the community. As test data for evaluating performance and comparison with other methods, we apply SPIDERz to four distinct data sets: 1) the publicly available portion of the PHAT-1 catalog based on the GOODS-N field with spectroscopic redshifts in the range z < 3.6, 2) 14 365 galaxies from the COSMOS bright survey with photometric band magnitudes, morphology, and spectroscopic redshifts inside z < 1.4, 3) 3048 galaxies from the overlap of COSMOS photometry and morphology with 3D-HST spectroscopy extending to z < 3.9, and 4) 2612 galaxies with five-band photometric magnitudes and morphology from the All-wavelength Extended Groth Strip International Survey and z < 1.57. Results. We find that SPIDERz achieves results competitive with other empirical packages on the PHAT-1 data, and performs quite well in estimating redshifts with the COSMOS and AEGIS data, including in the cases of a large redshift range (0 < z < 3.9). We also determine from analyses with both the COSMOS and AEGIS data that the inclusion of morphological information does not have a statistically significant benefit for photometric redshift estimation with the techniques employed here. |
doi_str_mv | 10.1051/0004-6361/201629558 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904250480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904250480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-14b8092f342511f23a19b713ef34d6e137c5fa0159361a2db42960454a03bb1b3</originalsourceid><addsrcrecordid>eNqFkbtu3DAQRYnAAbJ28gVpWLqRPcOHRJWG4RfgOE1eHUFxqYiJVlRIKvAW_vdQ2GBbVxzOnHtB3iHkI8IFgsRLABBVzWu8ZIA1a6VUb8gGBWcVNKI-IZsj8Y6cpvSrXBkqviEvV5MZ98knGnpqqF1SDjualnkOMdO_zuYQ6c7YwU-O9qWeh1AIl6O3NLptGnyfqUvZ70z2YaJm2tI8OOonOy5p7RTjn2Y0z3uaBjOvk-JzoN-Tt70Zk_vw_zwjX29vvlzfV4-f7x6urx4ry1uVKxSdgpb1XDCJ2DNusO0a5K50trVD3ljZG0DZlg8atu0Ea2sQUhjgXYcdPyPnB985hj9Lea3e-WTdOJrJhSVpbKFYg1DwOqpaVEpIxQrKD6iNIaXoej3HEkPcawS97kWvqes1dX3cS1FVB5VP2T0fJSb-1nXDG6kVfNd3TDVPP7590sD_AVGDkB4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891884582</pqid></control><display><type>article</type><title>Analysis of a custom support vector machine for photometric redshift estimation and the inclusion of galaxy shape information</title><source>EZB Electronic Journals Library</source><creator>Jones, E. ; Singal, J.</creator><creatorcontrib>Jones, E. ; Singal, J.</creatorcontrib><description><![CDATA[Aims. We present a custom support vector machine classification package for photometric redshift estimation, including comparisons with other methods. We also explore the efficacy of including galaxy shape information in redshift estimation. Support vector machines, a type of machine learning, utilize optimization theory and supervised learning algorithms to construct predictive models based on the information content of data in a way that can treat different input features symmetrically, which can be a useful estimator of the information contained in additional features beyond photometry, such as those describing the morphology of galaxies. Methods. The custom support vector machine package we have developed is designated SPIDERz and made available to the community. As test data for evaluating performance and comparison with other methods, we apply SPIDERz to four distinct data sets: 1) the publicly available portion of the PHAT-1 catalog based on the GOODS-N field with spectroscopic redshifts in the range z < 3.6, 2) 14 365 galaxies from the COSMOS bright survey with photometric band magnitudes, morphology, and spectroscopic redshifts inside z < 1.4, 3) 3048 galaxies from the overlap of COSMOS photometry and morphology with 3D-HST spectroscopy extending to z < 3.9, and 4) 2612 galaxies with five-band photometric magnitudes and morphology from the All-wavelength Extended Groth Strip International Survey and z < 1.57. Results. We find that SPIDERz achieves results competitive with other empirical packages on the PHAT-1 data, and performs quite well in estimating redshifts with the COSMOS and AEGIS data, including in the cases of a large redshift range (0 < z < 3.9). We also determine from analyses with both the COSMOS and AEGIS data that the inclusion of morphological information does not have a statistically significant benefit for photometric redshift estimation with the techniques employed here.]]></description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201629558</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Cosmos ; Galaxies ; galaxies: statistics ; methods: miscellaneous ; Morphology ; Packages ; Photometry ; Red shift ; Spectroscopic analysis ; Support vector machines ; techniques: photometric</subject><ispartof>Astronomy and astrophysics (Berlin), 2017-04, Vol.600, p.A113</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-14b8092f342511f23a19b713ef34d6e137c5fa0159361a2db42960454a03bb1b3</citedby><cites>FETCH-LOGICAL-c398t-14b8092f342511f23a19b713ef34d6e137c5fa0159361a2db42960454a03bb1b3</cites><orcidid>0000-0001-7725-2546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jones, E.</creatorcontrib><creatorcontrib>Singal, J.</creatorcontrib><title>Analysis of a custom support vector machine for photometric redshift estimation and the inclusion of galaxy shape information</title><title>Astronomy and astrophysics (Berlin)</title><description><![CDATA[Aims. We present a custom support vector machine classification package for photometric redshift estimation, including comparisons with other methods. We also explore the efficacy of including galaxy shape information in redshift estimation. Support vector machines, a type of machine learning, utilize optimization theory and supervised learning algorithms to construct predictive models based on the information content of data in a way that can treat different input features symmetrically, which can be a useful estimator of the information contained in additional features beyond photometry, such as those describing the morphology of galaxies. Methods. The custom support vector machine package we have developed is designated SPIDERz and made available to the community. As test data for evaluating performance and comparison with other methods, we apply SPIDERz to four distinct data sets: 1) the publicly available portion of the PHAT-1 catalog based on the GOODS-N field with spectroscopic redshifts in the range z < 3.6, 2) 14 365 galaxies from the COSMOS bright survey with photometric band magnitudes, morphology, and spectroscopic redshifts inside z < 1.4, 3) 3048 galaxies from the overlap of COSMOS photometry and morphology with 3D-HST spectroscopy extending to z < 3.9, and 4) 2612 galaxies with five-band photometric magnitudes and morphology from the All-wavelength Extended Groth Strip International Survey and z < 1.57. Results. We find that SPIDERz achieves results competitive with other empirical packages on the PHAT-1 data, and performs quite well in estimating redshifts with the COSMOS and AEGIS data, including in the cases of a large redshift range (0 < z < 3.9). We also determine from analyses with both the COSMOS and AEGIS data that the inclusion of morphological information does not have a statistically significant benefit for photometric redshift estimation with the techniques employed here.]]></description><subject>Cosmos</subject><subject>Galaxies</subject><subject>galaxies: statistics</subject><subject>methods: miscellaneous</subject><subject>Morphology</subject><subject>Packages</subject><subject>Photometry</subject><subject>Red shift</subject><subject>Spectroscopic analysis</subject><subject>Support vector machines</subject><subject>techniques: photometric</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkbtu3DAQRYnAAbJ28gVpWLqRPcOHRJWG4RfgOE1eHUFxqYiJVlRIKvAW_vdQ2GBbVxzOnHtB3iHkI8IFgsRLABBVzWu8ZIA1a6VUb8gGBWcVNKI-IZsj8Y6cpvSrXBkqviEvV5MZ98knGnpqqF1SDjualnkOMdO_zuYQ6c7YwU-O9qWeh1AIl6O3NLptGnyfqUvZ70z2YaJm2tI8OOonOy5p7RTjn2Y0z3uaBjOvk-JzoN-Tt70Zk_vw_zwjX29vvlzfV4-f7x6urx4ry1uVKxSdgpb1XDCJ2DNusO0a5K50trVD3ljZG0DZlg8atu0Ea2sQUhjgXYcdPyPnB985hj9Lea3e-WTdOJrJhSVpbKFYg1DwOqpaVEpIxQrKD6iNIaXoej3HEkPcawS97kWvqes1dX3cS1FVB5VP2T0fJSb-1nXDG6kVfNd3TDVPP7590sD_AVGDkB4</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Jones, E.</creator><creator>Singal, J.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7725-2546</orcidid></search><sort><creationdate>20170401</creationdate><title>Analysis of a custom support vector machine for photometric redshift estimation and the inclusion of galaxy shape information</title><author>Jones, E. ; Singal, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-14b8092f342511f23a19b713ef34d6e137c5fa0159361a2db42960454a03bb1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cosmos</topic><topic>Galaxies</topic><topic>galaxies: statistics</topic><topic>methods: miscellaneous</topic><topic>Morphology</topic><topic>Packages</topic><topic>Photometry</topic><topic>Red shift</topic><topic>Spectroscopic analysis</topic><topic>Support vector machines</topic><topic>techniques: photometric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, E.</creatorcontrib><creatorcontrib>Singal, J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, E.</au><au>Singal, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of a custom support vector machine for photometric redshift estimation and the inclusion of galaxy shape information</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>600</volume><spage>A113</spage><pages>A113-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract><![CDATA[Aims. We present a custom support vector machine classification package for photometric redshift estimation, including comparisons with other methods. We also explore the efficacy of including galaxy shape information in redshift estimation. Support vector machines, a type of machine learning, utilize optimization theory and supervised learning algorithms to construct predictive models based on the information content of data in a way that can treat different input features symmetrically, which can be a useful estimator of the information contained in additional features beyond photometry, such as those describing the morphology of galaxies. Methods. The custom support vector machine package we have developed is designated SPIDERz and made available to the community. As test data for evaluating performance and comparison with other methods, we apply SPIDERz to four distinct data sets: 1) the publicly available portion of the PHAT-1 catalog based on the GOODS-N field with spectroscopic redshifts in the range z < 3.6, 2) 14 365 galaxies from the COSMOS bright survey with photometric band magnitudes, morphology, and spectroscopic redshifts inside z < 1.4, 3) 3048 galaxies from the overlap of COSMOS photometry and morphology with 3D-HST spectroscopy extending to z < 3.9, and 4) 2612 galaxies with five-band photometric magnitudes and morphology from the All-wavelength Extended Groth Strip International Survey and z < 1.57. Results. We find that SPIDERz achieves results competitive with other empirical packages on the PHAT-1 data, and performs quite well in estimating redshifts with the COSMOS and AEGIS data, including in the cases of a large redshift range (0 < z < 3.9). We also determine from analyses with both the COSMOS and AEGIS data that the inclusion of morphological information does not have a statistically significant benefit for photometric redshift estimation with the techniques employed here.]]></abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201629558</doi><orcidid>https://orcid.org/0000-0001-7725-2546</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2017-04, Vol.600, p.A113 |
issn | 0004-6361 1432-0746 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904250480 |
source | EZB Electronic Journals Library |
subjects | Cosmos Galaxies galaxies: statistics methods: miscellaneous Morphology Packages Photometry Red shift Spectroscopic analysis Support vector machines techniques: photometric |
title | Analysis of a custom support vector machine for photometric redshift estimation and the inclusion of galaxy shape information |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20a%20custom%20support%20vector%20machine%20for%20photometric%20redshift%20estimation%20and%20the%20inclusion%20of%20galaxy%20shape%20information&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Jones,%20E.&rft.date=2017-04-01&rft.volume=600&rft.spage=A113&rft.pages=A113-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201629558&rft_dat=%3Cproquest_cross%3E1904250480%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-14b8092f342511f23a19b713ef34d6e137c5fa0159361a2db42960454a03bb1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1891884582&rft_id=info:pmid/&rfr_iscdi=true |