Loading…

Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas

Kibble-Zurek theory models the dynamics of spontaneous symmetry breaking, which plays an important role in a wide variety of physical contexts, ranging from cosmology to superconductors. We explored these dynamics in a homogeneous system by thermally quenching an atomic gas with short-range interact...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2015-01, Vol.347 (6218), p.167-170
Main Authors: Navon, Nir, Gaunt, Alexander L., Smith, Robert P., Hadzibabic, Zoran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c431t-a8218c023803da4155180a165d0abbd7f6da560eb395828ce6489226c54a274c3
cites cdi_FETCH-LOGICAL-c431t-a8218c023803da4155180a165d0abbd7f6da560eb395828ce6489226c54a274c3
container_end_page 170
container_issue 6218
container_start_page 167
container_title Science (American Association for the Advancement of Science)
container_volume 347
creator Navon, Nir
Gaunt, Alexander L.
Smith, Robert P.
Hadzibabic, Zoran
description Kibble-Zurek theory models the dynamics of spontaneous symmetry breaking, which plays an important role in a wide variety of physical contexts, ranging from cosmology to superconductors. We explored these dynamics in a homogeneous system by thermally quenching an atomic gas with short-range interactions through the Bose-Einstein phase transition. Using homodyne matter-wave interferometry to measure first-order correlation functions, we verified the central quantitative prediction of the Kibble-Zurek theory, namely the homogeneous-system power-law scaling of the coherence length with the quench rate. Moreover, we directly confirmed its underlying hypothesis, the freezing of the correlation length near the transition. Our measurements agree with a beyond-mean-field theory and support the expectation that the dynamical critical exponent for this universality class is z = 3/2.
doi_str_mv 10.1126/science.1258676
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904251234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24745735</jstor_id><sourcerecordid>24745735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-a8218c023803da4155180a165d0abbd7f6da560eb395828ce6489226c54a274c3</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EEqUwMyFZYmFJe_2MM0JVHlIlFpgtx3GKSxIXOx3y7wmkYmC6w_3O0dGH0DWBBSFULpP1rrNuQahQMpcnaEagEFlBgZ2iGQCTmYJcnKOLlHYA469gM7RZRd97axpcDZ1pvU041DjtQ9ebzoVDwmloW9fHAZfRmU_fbbHvsMEfoQ1bNyEPITm8NekSndWmSe7qeOfo_XH9tnrONq9PL6v7TWY5I31mFCXKAmUKWGU4EYIoMESKCkxZVnktKyMkuJIVQlFlneSqoFRawQ3NuWVzdDf17mP4OrjU69Yn65pmmqxJAZwKQhkf0dt_6C4cYjeu00RyxgnwX2o5UTaGlKKr9T761sRBE9A_dvXRrj7aHRM3U2KX-hD_cMpzLnIm2DdkK3cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1643410434</pqid></control><display><type>article</type><title>Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Navon, Nir ; Gaunt, Alexander L. ; Smith, Robert P. ; Hadzibabic, Zoran</creator><creatorcontrib>Navon, Nir ; Gaunt, Alexander L. ; Smith, Robert P. ; Hadzibabic, Zoran</creatorcontrib><description>Kibble-Zurek theory models the dynamics of spontaneous symmetry breaking, which plays an important role in a wide variety of physical contexts, ranging from cosmology to superconductors. We explored these dynamics in a homogeneous system by thermally quenching an atomic gas with short-range interactions through the Bose-Einstein phase transition. Using homodyne matter-wave interferometry to measure first-order correlation functions, we verified the central quantitative prediction of the Kibble-Zurek theory, namely the homogeneous-system power-law scaling of the coherence length with the quench rate. Moreover, we directly confirmed its underlying hypothesis, the freezing of the correlation length near the transition. Our measurements agree with a beyond-mean-field theory and support the expectation that the dynamical critical exponent for this universality class is z = 3/2.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1258676</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>Breaking ; Broken symmetry ; Cooling ; Cooling systems ; Dynamical systems ; Dynamics ; Gases ; Mathematical models ; Spontaneous ; Symmetry</subject><ispartof>Science (American Association for the Advancement of Science), 2015-01, Vol.347 (6218), p.167-170</ispartof><rights>Copyright © 2015 American Association for the Advancement of Science</rights><rights>Copyright © 2015, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-a8218c023803da4155180a165d0abbd7f6da560eb395828ce6489226c54a274c3</citedby><cites>FETCH-LOGICAL-c431t-a8218c023803da4155180a165d0abbd7f6da560eb395828ce6489226c54a274c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24745735$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24745735$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,2884,2885,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Navon, Nir</creatorcontrib><creatorcontrib>Gaunt, Alexander L.</creatorcontrib><creatorcontrib>Smith, Robert P.</creatorcontrib><creatorcontrib>Hadzibabic, Zoran</creatorcontrib><title>Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas</title><title>Science (American Association for the Advancement of Science)</title><description>Kibble-Zurek theory models the dynamics of spontaneous symmetry breaking, which plays an important role in a wide variety of physical contexts, ranging from cosmology to superconductors. We explored these dynamics in a homogeneous system by thermally quenching an atomic gas with short-range interactions through the Bose-Einstein phase transition. Using homodyne matter-wave interferometry to measure first-order correlation functions, we verified the central quantitative prediction of the Kibble-Zurek theory, namely the homogeneous-system power-law scaling of the coherence length with the quench rate. Moreover, we directly confirmed its underlying hypothesis, the freezing of the correlation length near the transition. Our measurements agree with a beyond-mean-field theory and support the expectation that the dynamical critical exponent for this universality class is z = 3/2.</description><subject>Breaking</subject><subject>Broken symmetry</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Gases</subject><subject>Mathematical models</subject><subject>Spontaneous</subject><subject>Symmetry</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAUhS0EEqUwMyFZYmFJe_2MM0JVHlIlFpgtx3GKSxIXOx3y7wmkYmC6w_3O0dGH0DWBBSFULpP1rrNuQahQMpcnaEagEFlBgZ2iGQCTmYJcnKOLlHYA469gM7RZRd97axpcDZ1pvU041DjtQ9ebzoVDwmloW9fHAZfRmU_fbbHvsMEfoQ1bNyEPITm8NekSndWmSe7qeOfo_XH9tnrONq9PL6v7TWY5I31mFCXKAmUKWGU4EYIoMESKCkxZVnktKyMkuJIVQlFlneSqoFRawQ3NuWVzdDf17mP4OrjU69Yn65pmmqxJAZwKQhkf0dt_6C4cYjeu00RyxgnwX2o5UTaGlKKr9T761sRBE9A_dvXRrj7aHRM3U2KX-hD_cMpzLnIm2DdkK3cw</recordid><startdate>20150109</startdate><enddate>20150109</enddate><creator>Navon, Nir</creator><creator>Gaunt, Alexander L.</creator><creator>Smith, Robert P.</creator><creator>Hadzibabic, Zoran</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20150109</creationdate><title>Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas</title><author>Navon, Nir ; Gaunt, Alexander L. ; Smith, Robert P. ; Hadzibabic, Zoran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-a8218c023803da4155180a165d0abbd7f6da560eb395828ce6489226c54a274c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Breaking</topic><topic>Broken symmetry</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Gases</topic><topic>Mathematical models</topic><topic>Spontaneous</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navon, Nir</creatorcontrib><creatorcontrib>Gaunt, Alexander L.</creatorcontrib><creatorcontrib>Smith, Robert P.</creatorcontrib><creatorcontrib>Hadzibabic, Zoran</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navon, Nir</au><au>Gaunt, Alexander L.</au><au>Smith, Robert P.</au><au>Hadzibabic, Zoran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2015-01-09</date><risdate>2015</risdate><volume>347</volume><issue>6218</issue><spage>167</spage><epage>170</epage><pages>167-170</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Kibble-Zurek theory models the dynamics of spontaneous symmetry breaking, which plays an important role in a wide variety of physical contexts, ranging from cosmology to superconductors. We explored these dynamics in a homogeneous system by thermally quenching an atomic gas with short-range interactions through the Bose-Einstein phase transition. Using homodyne matter-wave interferometry to measure first-order correlation functions, we verified the central quantitative prediction of the Kibble-Zurek theory, namely the homogeneous-system power-law scaling of the coherence length with the quench rate. Moreover, we directly confirmed its underlying hypothesis, the freezing of the correlation length near the transition. Our measurements agree with a beyond-mean-field theory and support the expectation that the dynamical critical exponent for this universality class is z = 3/2.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><doi>10.1126/science.1258676</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2015-01, Vol.347 (6218), p.167-170
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1904251234
source American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection
subjects Breaking
Broken symmetry
Cooling
Cooling systems
Dynamical systems
Dynamics
Gases
Mathematical models
Spontaneous
Symmetry
title Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20dynamics%20of%20spontaneous%20symmetry%20breaking%20in%20a%20homogeneous%20Bose%20gas&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Navon,%20Nir&rft.date=2015-01-09&rft.volume=347&rft.issue=6218&rft.spage=167&rft.epage=170&rft.pages=167-170&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1258676&rft_dat=%3Cjstor_proqu%3E24745735%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-a8218c023803da4155180a165d0abbd7f6da560eb395828ce6489226c54a274c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1643410434&rft_id=info:pmid/&rft_jstor_id=24745735&rfr_iscdi=true