Loading…
Mapping of quantitative trait loci underlying resistance to cassava anthracnose disease
Cassava (Manihot esculenta Crantz) is an economically important root crop in Thailand, which is ranked the world's top cassava exporting country. Production of cassava can be hampered by several pathogens and pests. Cassava anthracnose disease (CAD) is an important disease caused by the fungus...
Saved in:
Published in: | The Journal of agricultural science 2016-09, Vol.154 (7), p.1209-1217 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cassava (Manihot esculenta Crantz) is an economically important root crop in Thailand, which is ranked the world's top cassava exporting country. Production of cassava can be hampered by several pathogens and pests. Cassava anthracnose disease (CAD) is an important disease caused by the fungus Colletotrichum gloeosporioides f. sp. manihotis. The pathogen causes severe stem damage resulting in yield reductions and lack of stem cuttings available for planting. Molecular studies of cassava response to CAD will provide useful information for cassava breeders to develop new varieties with resistance to the disease. The current study aimed to identify quantitative trait loci (QTL) and DNA markers associated with resistance to CAD. A total of 200 lines of two F1 mapping populations were generated by reciprocal crosses between the varieties Huabong60 and Hanatee. The F1 samples were genotyped based on simple sequence repeat (SSR) and expressed sequence tag-SSR markers and a genetic linkage map was constructed using the JoinMap®/version3·0 program. The results showed that the map consisted of 512 marker loci distributed on 24 linkage groups with a map length of 1771·9 centimorgan (cM) and a mean interval between markers of 5·7 cM. The genetic linkage map was integrated with phenotypic data for the response to CAD infection generated by a detached leaf assay test. A total of three QTL underlying the trait were identified on three linkage groups using the MapQTL®/version4·0 program. Those DNA markers linked to the QTL that showed high statistically significant values with the CAD resistance trait were identified for gene annotation analysis and 23 candidate resistance genes to CAD infection were identified. |
---|---|
ISSN: | 0021-8596 1469-5146 |
DOI: | 10.1017/S0021859615001057 |