Loading…
Intensified Biobutanol Recovery by using Zeolites with Complementary Selectivity
A vapor‐phase adsorptive recovery process is proposed as an alternative way to isolate biobutanol from acetone–butanol–ethanol (ABE) fermentation media, offering several advantages compared to liquid phase separation. The effect of water, which is still present in large quantities in the vapor phase...
Saved in:
Published in: | ChemSusChem 2017-07, Vol.10 (14), p.2968-2977 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4507-82236b45966149c5577e32c68d8f6ac640b9729272f74f968e02a41e9b03a0e33 |
---|---|
cites | cdi_FETCH-LOGICAL-c4507-82236b45966149c5577e32c68d8f6ac640b9729272f74f968e02a41e9b03a0e33 |
container_end_page | 2977 |
container_issue | 14 |
container_start_page | 2968 |
container_title | ChemSusChem |
container_volume | 10 |
creator | Van der Perre, Stijn Gelin, Pierre Claessens, Benjamin Martin‐Calvo, Ana Cousin Saint Remi, Julien Duerinck, Tim Baron, Gino V. Palomino, Miguel Sánchez, Ledys Y. Valencia, Susana Shang, Jin Singh, Ranjeet Webley, Paul A. Rey, Fernando Denayer, Joeri F. M. |
description | A vapor‐phase adsorptive recovery process is proposed as an alternative way to isolate biobutanol from acetone–butanol–ethanol (ABE) fermentation media, offering several advantages compared to liquid phase separation. The effect of water, which is still present in large quantities in the vapor phase, on the adsorption of the organics could be minimized by using hydrophobic zeolites. Shape‐selective all‐silica zeolites CHA and LTA were prepared and evaluated with single‐component isotherms and breakthrough experiments. These zeolites show opposite selectivities; adsorption of ethanol is favorable on all‐silica CHA, whereas the LTA topology has a clear preference for butanol. The molecular sieving properties of both zeolites allow easy elimination of acetone from the mixture. The molecular interaction mechanisms are studied by density functional theory (DFT) simulations. The effects of mixture composition, humidity and total pressure of the vapor stream on the selectivity and separation behavior are investigated. Desorption profiles are studied to maximize butanol purity and recovery. The combination of LTA with CHA‐type zeolites (Si‐CHA or SAPO‐34) in sequential adsorption columns with alternating adsorption and desorption steps allows butanol to be recovered in unpreceded purity and yield. A butanol purity of 99.7 mol % could be obtained at nearly complete butanol recovery, demonstrating the effectiveness of this technique for biobutanol separation processes.
What a butanol day! The production of biobutanol from fermentation solutions is afflicted by high separation costs, owing to the presence of byproducts and a low final concentration. An alternative downstream process for butanol removal from a fermenter's headspace is proposed by using a specific 2‐stage adsorptive method, which couples very high product recovery with extremely high purity. |
doi_str_mv | 10.1002/cssc.201700667 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1906465773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920605155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4507-82236b45966149c5577e32c68d8f6ac640b9729272f74f968e02a41e9b03a0e33</originalsourceid><addsrcrecordid>eNqFkM1LwzAYh4Mobn5cPUrBi5fOJM1He9Tix2CgOAXxUtrsrWa0zWzSjf73ZmxO8OIpOTx5-OVB6IzgEcGYXilr1YhiIjEWQu6hIYkFC7lgb_u7e0QG6MjauUdwIsQhGtCYx1zKeIiexo2DxupSwyy40aboXN6YKngGZZbQ9kHRB53VzUfwDqbSDmyw0u4zSE29qKCGxuUemkIFyumldv0JOijzysLp9jxGr3e3L-lDOHm8H6fXk1AxjmUYUxqJgnG_h7BEcb8GIqpEPItLkSvBcJFImlBJS8nKRMSAac4IJAWOcgxRdIwuN95Fa746sC6rtVVQVXkDprMZSbBgwmvX6MUfdG66tvHrPEV9FE4499RoQ6nWWNtCmS1aXfvfZQRn69bZunW2a-0fnG-1XVHDbIf_xPVAsgFWuoL-H12WTqfpr_wbCHWKTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920605155</pqid></control><display><type>article</type><title>Intensified Biobutanol Recovery by using Zeolites with Complementary Selectivity</title><source>Wiley</source><creator>Van der Perre, Stijn ; Gelin, Pierre ; Claessens, Benjamin ; Martin‐Calvo, Ana ; Cousin Saint Remi, Julien ; Duerinck, Tim ; Baron, Gino V. ; Palomino, Miguel ; Sánchez, Ledys Y. ; Valencia, Susana ; Shang, Jin ; Singh, Ranjeet ; Webley, Paul A. ; Rey, Fernando ; Denayer, Joeri F. M.</creator><creatorcontrib>Van der Perre, Stijn ; Gelin, Pierre ; Claessens, Benjamin ; Martin‐Calvo, Ana ; Cousin Saint Remi, Julien ; Duerinck, Tim ; Baron, Gino V. ; Palomino, Miguel ; Sánchez, Ledys Y. ; Valencia, Susana ; Shang, Jin ; Singh, Ranjeet ; Webley, Paul A. ; Rey, Fernando ; Denayer, Joeri F. M.</creatorcontrib><description>A vapor‐phase adsorptive recovery process is proposed as an alternative way to isolate biobutanol from acetone–butanol–ethanol (ABE) fermentation media, offering several advantages compared to liquid phase separation. The effect of water, which is still present in large quantities in the vapor phase, on the adsorption of the organics could be minimized by using hydrophobic zeolites. Shape‐selective all‐silica zeolites CHA and LTA were prepared and evaluated with single‐component isotherms and breakthrough experiments. These zeolites show opposite selectivities; adsorption of ethanol is favorable on all‐silica CHA, whereas the LTA topology has a clear preference for butanol. The molecular sieving properties of both zeolites allow easy elimination of acetone from the mixture. The molecular interaction mechanisms are studied by density functional theory (DFT) simulations. The effects of mixture composition, humidity and total pressure of the vapor stream on the selectivity and separation behavior are investigated. Desorption profiles are studied to maximize butanol purity and recovery. The combination of LTA with CHA‐type zeolites (Si‐CHA or SAPO‐34) in sequential adsorption columns with alternating adsorption and desorption steps allows butanol to be recovered in unpreceded purity and yield. A butanol purity of 99.7 mol % could be obtained at nearly complete butanol recovery, demonstrating the effectiveness of this technique for biobutanol separation processes.
What a butanol day! The production of biobutanol from fermentation solutions is afflicted by high separation costs, owing to the presence of byproducts and a low final concentration. An alternative downstream process for butanol removal from a fermenter's headspace is proposed by using a specific 2‐stage adsorptive method, which couples very high product recovery with extremely high purity.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201700667</identifier><identifier>PMID: 28585778</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>1-Butanol - chemistry ; Acetone ; Acetone - chemistry ; Adsorption ; Adsorptivity ; biobutanol ; biorefineries ; Butanol ; Columns (process) ; Composition effects ; Density functional theory ; Desorption ; downstream processing ; Ethanol ; Ethanol - chemistry ; Fermentation ; Isotherms ; Models, Molecular ; Molecular Conformation ; Phase separation ; Purity ; Recovery ; Selectivity ; Silicon dioxide ; Topology ; Volatilization ; Zeolites ; Zeolites - chemistry</subject><ispartof>ChemSusChem, 2017-07, Vol.10 (14), p.2968-2977</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4507-82236b45966149c5577e32c68d8f6ac640b9729272f74f968e02a41e9b03a0e33</citedby><cites>FETCH-LOGICAL-c4507-82236b45966149c5577e32c68d8f6ac640b9729272f74f968e02a41e9b03a0e33</cites><orcidid>0000-0003-4483-2434 ; 0000-0002-3405-1557 ; 0000-0001-7160-2795 ; 0000-0003-2983-1038 ; 0000-0001-5587-5136 ; 0000-0003-3598-3767 ; 0000-0002-1684-0034 ; 0000-0003-3337-2508 ; 0000-0001-5165-0466 ; 0000-0002-0284-6777 ; 0000-0002-4937-1641 ; 0000-0003-3502-2800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28585778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van der Perre, Stijn</creatorcontrib><creatorcontrib>Gelin, Pierre</creatorcontrib><creatorcontrib>Claessens, Benjamin</creatorcontrib><creatorcontrib>Martin‐Calvo, Ana</creatorcontrib><creatorcontrib>Cousin Saint Remi, Julien</creatorcontrib><creatorcontrib>Duerinck, Tim</creatorcontrib><creatorcontrib>Baron, Gino V.</creatorcontrib><creatorcontrib>Palomino, Miguel</creatorcontrib><creatorcontrib>Sánchez, Ledys Y.</creatorcontrib><creatorcontrib>Valencia, Susana</creatorcontrib><creatorcontrib>Shang, Jin</creatorcontrib><creatorcontrib>Singh, Ranjeet</creatorcontrib><creatorcontrib>Webley, Paul A.</creatorcontrib><creatorcontrib>Rey, Fernando</creatorcontrib><creatorcontrib>Denayer, Joeri F. M.</creatorcontrib><title>Intensified Biobutanol Recovery by using Zeolites with Complementary Selectivity</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>A vapor‐phase adsorptive recovery process is proposed as an alternative way to isolate biobutanol from acetone–butanol–ethanol (ABE) fermentation media, offering several advantages compared to liquid phase separation. The effect of water, which is still present in large quantities in the vapor phase, on the adsorption of the organics could be minimized by using hydrophobic zeolites. Shape‐selective all‐silica zeolites CHA and LTA were prepared and evaluated with single‐component isotherms and breakthrough experiments. These zeolites show opposite selectivities; adsorption of ethanol is favorable on all‐silica CHA, whereas the LTA topology has a clear preference for butanol. The molecular sieving properties of both zeolites allow easy elimination of acetone from the mixture. The molecular interaction mechanisms are studied by density functional theory (DFT) simulations. The effects of mixture composition, humidity and total pressure of the vapor stream on the selectivity and separation behavior are investigated. Desorption profiles are studied to maximize butanol purity and recovery. The combination of LTA with CHA‐type zeolites (Si‐CHA or SAPO‐34) in sequential adsorption columns with alternating adsorption and desorption steps allows butanol to be recovered in unpreceded purity and yield. A butanol purity of 99.7 mol % could be obtained at nearly complete butanol recovery, demonstrating the effectiveness of this technique for biobutanol separation processes.
What a butanol day! The production of biobutanol from fermentation solutions is afflicted by high separation costs, owing to the presence of byproducts and a low final concentration. An alternative downstream process for butanol removal from a fermenter's headspace is proposed by using a specific 2‐stage adsorptive method, which couples very high product recovery with extremely high purity.</description><subject>1-Butanol - chemistry</subject><subject>Acetone</subject><subject>Acetone - chemistry</subject><subject>Adsorption</subject><subject>Adsorptivity</subject><subject>biobutanol</subject><subject>biorefineries</subject><subject>Butanol</subject><subject>Columns (process)</subject><subject>Composition effects</subject><subject>Density functional theory</subject><subject>Desorption</subject><subject>downstream processing</subject><subject>Ethanol</subject><subject>Ethanol - chemistry</subject><subject>Fermentation</subject><subject>Isotherms</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Phase separation</subject><subject>Purity</subject><subject>Recovery</subject><subject>Selectivity</subject><subject>Silicon dioxide</subject><subject>Topology</subject><subject>Volatilization</subject><subject>Zeolites</subject><subject>Zeolites - chemistry</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LwzAYh4Mobn5cPUrBi5fOJM1He9Tix2CgOAXxUtrsrWa0zWzSjf73ZmxO8OIpOTx5-OVB6IzgEcGYXilr1YhiIjEWQu6hIYkFC7lgb_u7e0QG6MjauUdwIsQhGtCYx1zKeIiexo2DxupSwyy40aboXN6YKngGZZbQ9kHRB53VzUfwDqbSDmyw0u4zSE29qKCGxuUemkIFyumldv0JOijzysLp9jxGr3e3L-lDOHm8H6fXk1AxjmUYUxqJgnG_h7BEcb8GIqpEPItLkSvBcJFImlBJS8nKRMSAac4IJAWOcgxRdIwuN95Fa746sC6rtVVQVXkDprMZSbBgwmvX6MUfdG66tvHrPEV9FE4499RoQ6nWWNtCmS1aXfvfZQRn69bZunW2a-0fnG-1XVHDbIf_xPVAsgFWuoL-H12WTqfpr_wbCHWKTw</recordid><startdate>20170721</startdate><enddate>20170721</enddate><creator>Van der Perre, Stijn</creator><creator>Gelin, Pierre</creator><creator>Claessens, Benjamin</creator><creator>Martin‐Calvo, Ana</creator><creator>Cousin Saint Remi, Julien</creator><creator>Duerinck, Tim</creator><creator>Baron, Gino V.</creator><creator>Palomino, Miguel</creator><creator>Sánchez, Ledys Y.</creator><creator>Valencia, Susana</creator><creator>Shang, Jin</creator><creator>Singh, Ranjeet</creator><creator>Webley, Paul A.</creator><creator>Rey, Fernando</creator><creator>Denayer, Joeri F. M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4483-2434</orcidid><orcidid>https://orcid.org/0000-0002-3405-1557</orcidid><orcidid>https://orcid.org/0000-0001-7160-2795</orcidid><orcidid>https://orcid.org/0000-0003-2983-1038</orcidid><orcidid>https://orcid.org/0000-0001-5587-5136</orcidid><orcidid>https://orcid.org/0000-0003-3598-3767</orcidid><orcidid>https://orcid.org/0000-0002-1684-0034</orcidid><orcidid>https://orcid.org/0000-0003-3337-2508</orcidid><orcidid>https://orcid.org/0000-0001-5165-0466</orcidid><orcidid>https://orcid.org/0000-0002-0284-6777</orcidid><orcidid>https://orcid.org/0000-0002-4937-1641</orcidid><orcidid>https://orcid.org/0000-0003-3502-2800</orcidid></search><sort><creationdate>20170721</creationdate><title>Intensified Biobutanol Recovery by using Zeolites with Complementary Selectivity</title><author>Van der Perre, Stijn ; Gelin, Pierre ; Claessens, Benjamin ; Martin‐Calvo, Ana ; Cousin Saint Remi, Julien ; Duerinck, Tim ; Baron, Gino V. ; Palomino, Miguel ; Sánchez, Ledys Y. ; Valencia, Susana ; Shang, Jin ; Singh, Ranjeet ; Webley, Paul A. ; Rey, Fernando ; Denayer, Joeri F. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4507-82236b45966149c5577e32c68d8f6ac640b9729272f74f968e02a41e9b03a0e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>1-Butanol - chemistry</topic><topic>Acetone</topic><topic>Acetone - chemistry</topic><topic>Adsorption</topic><topic>Adsorptivity</topic><topic>biobutanol</topic><topic>biorefineries</topic><topic>Butanol</topic><topic>Columns (process)</topic><topic>Composition effects</topic><topic>Density functional theory</topic><topic>Desorption</topic><topic>downstream processing</topic><topic>Ethanol</topic><topic>Ethanol - chemistry</topic><topic>Fermentation</topic><topic>Isotherms</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Phase separation</topic><topic>Purity</topic><topic>Recovery</topic><topic>Selectivity</topic><topic>Silicon dioxide</topic><topic>Topology</topic><topic>Volatilization</topic><topic>Zeolites</topic><topic>Zeolites - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van der Perre, Stijn</creatorcontrib><creatorcontrib>Gelin, Pierre</creatorcontrib><creatorcontrib>Claessens, Benjamin</creatorcontrib><creatorcontrib>Martin‐Calvo, Ana</creatorcontrib><creatorcontrib>Cousin Saint Remi, Julien</creatorcontrib><creatorcontrib>Duerinck, Tim</creatorcontrib><creatorcontrib>Baron, Gino V.</creatorcontrib><creatorcontrib>Palomino, Miguel</creatorcontrib><creatorcontrib>Sánchez, Ledys Y.</creatorcontrib><creatorcontrib>Valencia, Susana</creatorcontrib><creatorcontrib>Shang, Jin</creatorcontrib><creatorcontrib>Singh, Ranjeet</creatorcontrib><creatorcontrib>Webley, Paul A.</creatorcontrib><creatorcontrib>Rey, Fernando</creatorcontrib><creatorcontrib>Denayer, Joeri F. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van der Perre, Stijn</au><au>Gelin, Pierre</au><au>Claessens, Benjamin</au><au>Martin‐Calvo, Ana</au><au>Cousin Saint Remi, Julien</au><au>Duerinck, Tim</au><au>Baron, Gino V.</au><au>Palomino, Miguel</au><au>Sánchez, Ledys Y.</au><au>Valencia, Susana</au><au>Shang, Jin</au><au>Singh, Ranjeet</au><au>Webley, Paul A.</au><au>Rey, Fernando</au><au>Denayer, Joeri F. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intensified Biobutanol Recovery by using Zeolites with Complementary Selectivity</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2017-07-21</date><risdate>2017</risdate><volume>10</volume><issue>14</issue><spage>2968</spage><epage>2977</epage><pages>2968-2977</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>A vapor‐phase adsorptive recovery process is proposed as an alternative way to isolate biobutanol from acetone–butanol–ethanol (ABE) fermentation media, offering several advantages compared to liquid phase separation. The effect of water, which is still present in large quantities in the vapor phase, on the adsorption of the organics could be minimized by using hydrophobic zeolites. Shape‐selective all‐silica zeolites CHA and LTA were prepared and evaluated with single‐component isotherms and breakthrough experiments. These zeolites show opposite selectivities; adsorption of ethanol is favorable on all‐silica CHA, whereas the LTA topology has a clear preference for butanol. The molecular sieving properties of both zeolites allow easy elimination of acetone from the mixture. The molecular interaction mechanisms are studied by density functional theory (DFT) simulations. The effects of mixture composition, humidity and total pressure of the vapor stream on the selectivity and separation behavior are investigated. Desorption profiles are studied to maximize butanol purity and recovery. The combination of LTA with CHA‐type zeolites (Si‐CHA or SAPO‐34) in sequential adsorption columns with alternating adsorption and desorption steps allows butanol to be recovered in unpreceded purity and yield. A butanol purity of 99.7 mol % could be obtained at nearly complete butanol recovery, demonstrating the effectiveness of this technique for biobutanol separation processes.
What a butanol day! The production of biobutanol from fermentation solutions is afflicted by high separation costs, owing to the presence of byproducts and a low final concentration. An alternative downstream process for butanol removal from a fermenter's headspace is proposed by using a specific 2‐stage adsorptive method, which couples very high product recovery with extremely high purity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28585778</pmid><doi>10.1002/cssc.201700667</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4483-2434</orcidid><orcidid>https://orcid.org/0000-0002-3405-1557</orcidid><orcidid>https://orcid.org/0000-0001-7160-2795</orcidid><orcidid>https://orcid.org/0000-0003-2983-1038</orcidid><orcidid>https://orcid.org/0000-0001-5587-5136</orcidid><orcidid>https://orcid.org/0000-0003-3598-3767</orcidid><orcidid>https://orcid.org/0000-0002-1684-0034</orcidid><orcidid>https://orcid.org/0000-0003-3337-2508</orcidid><orcidid>https://orcid.org/0000-0001-5165-0466</orcidid><orcidid>https://orcid.org/0000-0002-0284-6777</orcidid><orcidid>https://orcid.org/0000-0002-4937-1641</orcidid><orcidid>https://orcid.org/0000-0003-3502-2800</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2017-07, Vol.10 (14), p.2968-2977 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_proquest_miscellaneous_1906465773 |
source | Wiley |
subjects | 1-Butanol - chemistry Acetone Acetone - chemistry Adsorption Adsorptivity biobutanol biorefineries Butanol Columns (process) Composition effects Density functional theory Desorption downstream processing Ethanol Ethanol - chemistry Fermentation Isotherms Models, Molecular Molecular Conformation Phase separation Purity Recovery Selectivity Silicon dioxide Topology Volatilization Zeolites Zeolites - chemistry |
title | Intensified Biobutanol Recovery by using Zeolites with Complementary Selectivity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intensified%20Biobutanol%20Recovery%20by%20using%20Zeolites%20with%20Complementary%20Selectivity&rft.jtitle=ChemSusChem&rft.au=Van%E2%80%85der%E2%80%85Perre,%20Stijn&rft.date=2017-07-21&rft.volume=10&rft.issue=14&rft.spage=2968&rft.epage=2977&rft.pages=2968-2977&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201700667&rft_dat=%3Cproquest_cross%3E1920605155%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4507-82236b45966149c5577e32c68d8f6ac640b9729272f74f968e02a41e9b03a0e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1920605155&rft_id=info:pmid/28585778&rfr_iscdi=true |