Loading…
Atomic resolution elemental mapping using energy-filtered imaging scanning transmission electron microscopy with chromatic aberration correction
•This paper addresses a novel approach to atomic resolution elemental mapping.•Approach is immune to spatial incoherence in the electron source.•Also immune to coherent aberrations in the probe forming lens and probe jitter.•Substantially reduces the preservation of elastic contrast relative to EFTE...
Saved in:
Published in: | Ultramicroscopy 2017-10, Vol.181, p.173-177 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-9af3305b7b3ed431b4c2aefa4f50261771be4541981f338759f2db1837de8e843 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-9af3305b7b3ed431b4c2aefa4f50261771be4541981f338759f2db1837de8e843 |
container_end_page | 177 |
container_issue | |
container_start_page | 173 |
container_title | Ultramicroscopy |
container_volume | 181 |
creator | Krause, F.F. Rosenauer, A. Barthel, J. Mayer, J. Urban, K. Dunin-Borkowski, R.E. Brown, H.G. Forbes, B.D. Allen, L.J. |
description | •This paper addresses a novel approach to atomic resolution elemental mapping.•Approach is immune to spatial incoherence in the electron source.•Also immune to coherent aberrations in the probe forming lens and probe jitter.•Substantially reduces the preservation of elastic contrast relative to EFTEM.•Application is demonstrated in a proof-of-principle study on strontium titanate.
This paper addresses a novel approach to atomic resolution elemental mapping, demonstrating a method that produces elemental maps with a similar resolution to the established method of electron energy-loss spectroscopy in scanning transmission electron microscopy. Dubbed energy-filtered imaging scanning transmission electron microscopy (EFISTEM) this mode of imaging is, by the quantum mechanical principle of reciprocity, equivalent to tilting the probe in energy-filtered transmission electron microscopy (EFTEM) through a cone and incoherently averaging the results. In this paper we present a proof-of-principle EFISTEM experimental study on strontium titanate. The present approach, made possible by chromatic aberration correction, has the advantage that it provides elemental maps which are immune to spatial incoherence in the electron source, coherent aberrations in the probe-forming lens and probe jitter. The veracity of the experiment is supported by quantum mechanical image simulations, which provide an insight into the image-forming process. Elemental maps obtained in EFTEM suffer from the effect known as preservation of elastic contrast, which, for example, can lead to a given atomic species appearing to be in atomic columns where it is not to be found. EFISTEM very substantially reduces the preservation of elastic contrast and yields images which show stability of contrast with changing thickness. The experimental application is demonstrated in a proof-of-principle study on strontium titanate. |
doi_str_mv | 10.1016/j.ultramic.2017.06.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1908793065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399117300827</els_id><sourcerecordid>1908793065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-9af3305b7b3ed431b4c2aefa4f50261771be4541981f338759f2db1837de8e843</originalsourceid><addsrcrecordid>eNqFUctO5DAQtFagZYD9BZTjXhLasZM4t0WIfUhIXOBsOU5n8Cixs7azaP6CT8bZGbhysUut6qruLkKuKBQUaH29K5YxejUZXZRAmwLqAoB_IRsqmjYvm5KdkA0w4DlrW3pGzkPYAQAFLr6Ss1LUCVK2Ia830SWRzGNw4xKNsxmOOKGNaswmNc_GbrMlrC9a9Nt9Ppgxosc-M5ParvWglbUrSPPYMJkQjio6-gSSundBu3mfvZj4nOln7yYVk6fq0Hv131M77xM_wUtyOqgx4Lfjf0Geft493v7O7x9-_bm9uc81q0XMWzUwBlXXdAx7zmjHdalwUHyooKxp09AOecVpK2giiqZqh7LvqGBNjwIFZxfk-0F39u7vgiHKNLnGcVQW3RIkbSFdkkFdJWp9oK6LBI-DnH1a3u8lBbmmIXfyPQ25piGhlimN1Hh19Fi6CfuPtvfzJ8KPAwHTpv8Mehm0QauxN-s5ZO_MZx5vVhSjzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1908793065</pqid></control><display><type>article</type><title>Atomic resolution elemental mapping using energy-filtered imaging scanning transmission electron microscopy with chromatic aberration correction</title><source>ScienceDirect Freedom Collection</source><creator>Krause, F.F. ; Rosenauer, A. ; Barthel, J. ; Mayer, J. ; Urban, K. ; Dunin-Borkowski, R.E. ; Brown, H.G. ; Forbes, B.D. ; Allen, L.J.</creator><creatorcontrib>Krause, F.F. ; Rosenauer, A. ; Barthel, J. ; Mayer, J. ; Urban, K. ; Dunin-Borkowski, R.E. ; Brown, H.G. ; Forbes, B.D. ; Allen, L.J.</creatorcontrib><description>•This paper addresses a novel approach to atomic resolution elemental mapping.•Approach is immune to spatial incoherence in the electron source.•Also immune to coherent aberrations in the probe forming lens and probe jitter.•Substantially reduces the preservation of elastic contrast relative to EFTEM.•Application is demonstrated in a proof-of-principle study on strontium titanate.
This paper addresses a novel approach to atomic resolution elemental mapping, demonstrating a method that produces elemental maps with a similar resolution to the established method of electron energy-loss spectroscopy in scanning transmission electron microscopy. Dubbed energy-filtered imaging scanning transmission electron microscopy (EFISTEM) this mode of imaging is, by the quantum mechanical principle of reciprocity, equivalent to tilting the probe in energy-filtered transmission electron microscopy (EFTEM) through a cone and incoherently averaging the results. In this paper we present a proof-of-principle EFISTEM experimental study on strontium titanate. The present approach, made possible by chromatic aberration correction, has the advantage that it provides elemental maps which are immune to spatial incoherence in the electron source, coherent aberrations in the probe-forming lens and probe jitter. The veracity of the experiment is supported by quantum mechanical image simulations, which provide an insight into the image-forming process. Elemental maps obtained in EFTEM suffer from the effect known as preservation of elastic contrast, which, for example, can lead to a given atomic species appearing to be in atomic columns where it is not to be found. EFISTEM very substantially reduces the preservation of elastic contrast and yields images which show stability of contrast with changing thickness. The experimental application is demonstrated in a proof-of-principle study on strontium titanate.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/j.ultramic.2017.06.004</identifier><identifier>PMID: 28601013</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Atomic resolution imaging ; Elemental mapping ; Energy-filtered imaging scanning transmission electron microscopy</subject><ispartof>Ultramicroscopy, 2017-10, Vol.181, p.173-177</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-9af3305b7b3ed431b4c2aefa4f50261771be4541981f338759f2db1837de8e843</citedby><cites>FETCH-LOGICAL-c368t-9af3305b7b3ed431b4c2aefa4f50261771be4541981f338759f2db1837de8e843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28601013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krause, F.F.</creatorcontrib><creatorcontrib>Rosenauer, A.</creatorcontrib><creatorcontrib>Barthel, J.</creatorcontrib><creatorcontrib>Mayer, J.</creatorcontrib><creatorcontrib>Urban, K.</creatorcontrib><creatorcontrib>Dunin-Borkowski, R.E.</creatorcontrib><creatorcontrib>Brown, H.G.</creatorcontrib><creatorcontrib>Forbes, B.D.</creatorcontrib><creatorcontrib>Allen, L.J.</creatorcontrib><title>Atomic resolution elemental mapping using energy-filtered imaging scanning transmission electron microscopy with chromatic aberration correction</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>•This paper addresses a novel approach to atomic resolution elemental mapping.•Approach is immune to spatial incoherence in the electron source.•Also immune to coherent aberrations in the probe forming lens and probe jitter.•Substantially reduces the preservation of elastic contrast relative to EFTEM.•Application is demonstrated in a proof-of-principle study on strontium titanate.
This paper addresses a novel approach to atomic resolution elemental mapping, demonstrating a method that produces elemental maps with a similar resolution to the established method of electron energy-loss spectroscopy in scanning transmission electron microscopy. Dubbed energy-filtered imaging scanning transmission electron microscopy (EFISTEM) this mode of imaging is, by the quantum mechanical principle of reciprocity, equivalent to tilting the probe in energy-filtered transmission electron microscopy (EFTEM) through a cone and incoherently averaging the results. In this paper we present a proof-of-principle EFISTEM experimental study on strontium titanate. The present approach, made possible by chromatic aberration correction, has the advantage that it provides elemental maps which are immune to spatial incoherence in the electron source, coherent aberrations in the probe-forming lens and probe jitter. The veracity of the experiment is supported by quantum mechanical image simulations, which provide an insight into the image-forming process. Elemental maps obtained in EFTEM suffer from the effect known as preservation of elastic contrast, which, for example, can lead to a given atomic species appearing to be in atomic columns where it is not to be found. EFISTEM very substantially reduces the preservation of elastic contrast and yields images which show stability of contrast with changing thickness. The experimental application is demonstrated in a proof-of-principle study on strontium titanate.</description><subject>Atomic resolution imaging</subject><subject>Elemental mapping</subject><subject>Energy-filtered imaging scanning transmission electron microscopy</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUctO5DAQtFagZYD9BZTjXhLasZM4t0WIfUhIXOBsOU5n8Cixs7azaP6CT8bZGbhysUut6qruLkKuKBQUaH29K5YxejUZXZRAmwLqAoB_IRsqmjYvm5KdkA0w4DlrW3pGzkPYAQAFLr6Ss1LUCVK2Ia830SWRzGNw4xKNsxmOOKGNaswmNc_GbrMlrC9a9Nt9Ppgxosc-M5ParvWglbUrSPPYMJkQjio6-gSSundBu3mfvZj4nOln7yYVk6fq0Hv131M77xM_wUtyOqgx4Lfjf0Geft493v7O7x9-_bm9uc81q0XMWzUwBlXXdAx7zmjHdalwUHyooKxp09AOecVpK2giiqZqh7LvqGBNjwIFZxfk-0F39u7vgiHKNLnGcVQW3RIkbSFdkkFdJWp9oK6LBI-DnH1a3u8lBbmmIXfyPQ25piGhlimN1Hh19Fi6CfuPtvfzJ8KPAwHTpv8Mehm0QauxN-s5ZO_MZx5vVhSjzQ</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Krause, F.F.</creator><creator>Rosenauer, A.</creator><creator>Barthel, J.</creator><creator>Mayer, J.</creator><creator>Urban, K.</creator><creator>Dunin-Borkowski, R.E.</creator><creator>Brown, H.G.</creator><creator>Forbes, B.D.</creator><creator>Allen, L.J.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Atomic resolution elemental mapping using energy-filtered imaging scanning transmission electron microscopy with chromatic aberration correction</title><author>Krause, F.F. ; Rosenauer, A. ; Barthel, J. ; Mayer, J. ; Urban, K. ; Dunin-Borkowski, R.E. ; Brown, H.G. ; Forbes, B.D. ; Allen, L.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-9af3305b7b3ed431b4c2aefa4f50261771be4541981f338759f2db1837de8e843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic resolution imaging</topic><topic>Elemental mapping</topic><topic>Energy-filtered imaging scanning transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krause, F.F.</creatorcontrib><creatorcontrib>Rosenauer, A.</creatorcontrib><creatorcontrib>Barthel, J.</creatorcontrib><creatorcontrib>Mayer, J.</creatorcontrib><creatorcontrib>Urban, K.</creatorcontrib><creatorcontrib>Dunin-Borkowski, R.E.</creatorcontrib><creatorcontrib>Brown, H.G.</creatorcontrib><creatorcontrib>Forbes, B.D.</creatorcontrib><creatorcontrib>Allen, L.J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krause, F.F.</au><au>Rosenauer, A.</au><au>Barthel, J.</au><au>Mayer, J.</au><au>Urban, K.</au><au>Dunin-Borkowski, R.E.</au><au>Brown, H.G.</au><au>Forbes, B.D.</au><au>Allen, L.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic resolution elemental mapping using energy-filtered imaging scanning transmission electron microscopy with chromatic aberration correction</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2017-10</date><risdate>2017</risdate><volume>181</volume><spage>173</spage><epage>177</epage><pages>173-177</pages><issn>0304-3991</issn><eissn>1879-2723</eissn><abstract>•This paper addresses a novel approach to atomic resolution elemental mapping.•Approach is immune to spatial incoherence in the electron source.•Also immune to coherent aberrations in the probe forming lens and probe jitter.•Substantially reduces the preservation of elastic contrast relative to EFTEM.•Application is demonstrated in a proof-of-principle study on strontium titanate.
This paper addresses a novel approach to atomic resolution elemental mapping, demonstrating a method that produces elemental maps with a similar resolution to the established method of electron energy-loss spectroscopy in scanning transmission electron microscopy. Dubbed energy-filtered imaging scanning transmission electron microscopy (EFISTEM) this mode of imaging is, by the quantum mechanical principle of reciprocity, equivalent to tilting the probe in energy-filtered transmission electron microscopy (EFTEM) through a cone and incoherently averaging the results. In this paper we present a proof-of-principle EFISTEM experimental study on strontium titanate. The present approach, made possible by chromatic aberration correction, has the advantage that it provides elemental maps which are immune to spatial incoherence in the electron source, coherent aberrations in the probe-forming lens and probe jitter. The veracity of the experiment is supported by quantum mechanical image simulations, which provide an insight into the image-forming process. Elemental maps obtained in EFTEM suffer from the effect known as preservation of elastic contrast, which, for example, can lead to a given atomic species appearing to be in atomic columns where it is not to be found. EFISTEM very substantially reduces the preservation of elastic contrast and yields images which show stability of contrast with changing thickness. The experimental application is demonstrated in a proof-of-principle study on strontium titanate.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28601013</pmid><doi>10.1016/j.ultramic.2017.06.004</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3991 |
ispartof | Ultramicroscopy, 2017-10, Vol.181, p.173-177 |
issn | 0304-3991 1879-2723 |
language | eng |
recordid | cdi_proquest_miscellaneous_1908793065 |
source | ScienceDirect Freedom Collection |
subjects | Atomic resolution imaging Elemental mapping Energy-filtered imaging scanning transmission electron microscopy |
title | Atomic resolution elemental mapping using energy-filtered imaging scanning transmission electron microscopy with chromatic aberration correction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20resolution%20elemental%20mapping%20using%20energy-filtered%20imaging%20scanning%20transmission%20electron%20microscopy%20with%20chromatic%20aberration%20correction&rft.jtitle=Ultramicroscopy&rft.au=Krause,%20F.F.&rft.date=2017-10&rft.volume=181&rft.spage=173&rft.epage=177&rft.pages=173-177&rft.issn=0304-3991&rft.eissn=1879-2723&rft_id=info:doi/10.1016/j.ultramic.2017.06.004&rft_dat=%3Cproquest_cross%3E1908793065%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-9af3305b7b3ed431b4c2aefa4f50261771be4541981f338759f2db1837de8e843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1908793065&rft_id=info:pmid/28601013&rfr_iscdi=true |