Loading…

Chemical template-assisted synthesis of monodisperse rattle-type Fe3O4@C hollow microspheres as drug carrier

[Display omitted] A chemical template strategy was put forward to synthesize monodisperse rattle-type magnetic carbon (Fe3O4@C) hollow microspheres. During the synthesis procedure, monodisperse Fe2O3 microspheres were used as chemical template, which released Fe3+ ions in acidic solution and initiat...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2017-08, Vol.58, p.432-441
Main Authors: Cheng, Lin, Ruan, Weimin, Zou, Bingfang, Liu, Yuanyuan, Wang, Yongqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] A chemical template strategy was put forward to synthesize monodisperse rattle-type magnetic carbon (Fe3O4@C) hollow microspheres. During the synthesis procedure, monodisperse Fe2O3 microspheres were used as chemical template, which released Fe3+ ions in acidic solution and initiated the in-situ polymerization of pyrrole into polypyrrole (PPy) shell. With the continual acidic etching of Fe2O3 microspheres, rattle-type Fe2O3@PPy microspheres were generated with the cavity appearing between the PPy shell and left Fe2O3 core, which were then transformed into Fe3O4@C hollow microspheres through calcination in nitrogen atmosphere. Compared with traditional physical template, the shell and cavity of rattle-type hollow microspheres were generated in one step using the chemical template method, which obviously saved the complex procedures including the coating and removal of middle shells. The experimental results exhibited that the rattle-type Fe3O4@C hollow microspheres with different parameters could be regulated through controlled synthesis of the intermediate Fe2O3@PPy product. Moreover, when the rattle-type Fe3O4@C hollow microspheres were investigated as drug carrier, they manifested sustained-release behaviour of doxorubicin, justifying their promising applications as carriers in drug delivery. The aim of the present study was first to synthesize rattle-type Fe3O4@C hollow microspheres through a simple synthesis method as a drug carrier. Here a chemical template synthesis of rattle-type hollow microspheres was developed, which saved the complex procedures including the coating and removal of middle shells in traditional physical template. Second, all the influence factors in the reaction processes were systematically investigated to obtain rattle-type Fe3O4@C hollow microspheres with controlled parameters. Third, the rattle-type Fe3O4@C hollow microspheres were studied as drug carriers and the influences of their structural parameters on drug loading and releasing performance were investigated.
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2017.06.007