Loading…

Boosting the Thermoelectric Performance of (Na,K)-Codoped Polycrystalline SnSe by Synergistic Tailoring of the Band Structure and Atomic-Scale Defect Phonon Scattering

We report the high thermoelectric performance of p-type polycrystalline SnSe obtained by the synergistic tailoring of band structures and atomic-scale defect phonon scattering through (Na,K)-codoping. The energy offsets of multiple valence bands in SnSe are decreased after Na doping and further redu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2017-07, Vol.139 (28), p.9714-9720
Main Authors: Ge, Zhen-Hua, Song, Dongsheng, Chong, Xiaoyu, Zheng, Fengshan, Jin, Lei, Qian, Xin, Zheng, Lei, Dunin-Borkowski, Rafal E, Qin, Peng, Feng, Jing, Zhao, Li-Dong
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report the high thermoelectric performance of p-type polycrystalline SnSe obtained by the synergistic tailoring of band structures and atomic-scale defect phonon scattering through (Na,K)-codoping. The energy offsets of multiple valence bands in SnSe are decreased after Na doping and further reduced by (Na,K)-codoping, resulting in an enhancement in the Seebeck coefficient and an increase in the power factor to 492 μW m–1 K–2. The lattice thermal conductivity of polycrystalline SnSe is decreased by the introduction of effective phonon scattering centers, such as point defects and antiphase boundaries. The lattice thermal conductivity of the material is reduced to values as low as 0.29 W m–1 K–1 at 773 K, whereas ZT is increased from 0.3 for 1% Na-doped SnSe to 1.2 for 1% (Na,K)-codoped SnSe.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.7b05339