Loading…

Water channels and barriers formed by claudins

Physiological studies in leaky epithelia, like kidney proximal tubules and the small intestine, have documented water transport via both transcellular and paracellular pathways. The discovery of aquaporin water channels provided a molecular basis for transcellular water movement. In contrast, the co...

Full description

Saved in:
Bibliographic Details
Published in:Annals of the New York Academy of Sciences 2017-06, Vol.1397 (1), p.100-109
Main Authors: Rosenthal, Rita, Günzel, Dorothee, Theune, Dian, Czichos, Carolina, Schulzke, Jörg‐Dieter, Fromm, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4233-ec0ab5f813e46ea8de3b6c57fa4f13f501808609858ac3cbbadc6fabdcc7ab883
cites cdi_FETCH-LOGICAL-c4233-ec0ab5f813e46ea8de3b6c57fa4f13f501808609858ac3cbbadc6fabdcc7ab883
container_end_page 109
container_issue 1
container_start_page 100
container_title Annals of the New York Academy of Sciences
container_volume 1397
creator Rosenthal, Rita
Günzel, Dorothee
Theune, Dian
Czichos, Carolina
Schulzke, Jörg‐Dieter
Fromm, Michael
description Physiological studies in leaky epithelia, like kidney proximal tubules and the small intestine, have documented water transport via both transcellular and paracellular pathways. The discovery of aquaporin water channels provided a molecular basis for transcellular water movement. In contrast, the contribution, or even existence, of a specific paracellular water pathway has been disputed for a long time, until the cation channel–forming tight junction protein claudin‐2 was shown to also permit the paracellular passage of water through its pore. In proximal kidney tubules, claudin‐2–based water transport contributes 23–30% of the total water transport. Other paracellular ion channels (claudin‐10a, ‐10b, and ‐17) proved to be impermeable to water, although their pore size would be sufficient for water molecules to pass. Studies of barrier‐forming claudins, like claudin‐1 and claudin‐3, which tighten the paracellular pathway against ions and larger solutes, indicate that changes in the expression of these sealing claudins do not influence transepithelial water permeability. The present genetic, molecular, computational, and physiological studies are just now beginning to probe the mechanisms and regulation of paracellular permeation.
doi_str_mv 10.1111/nyas.13383
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1912608883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1911803746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4233-ec0ab5f813e46ea8de3b6c57fa4f13f501808609858ac3cbbadc6fabdcc7ab883</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgipvTix9ACl5E6EyaNkmPY_gPhh5UxFN4kybY0aUzWZF-ezM7PXgwl5fAj-d9eRA6JXhK4rtyPYQpoVTQPTQmPC9Txmi2j8YYc56KMqMjdBTCEmOSiZwfolEmGGUCkzGavsLG-ES_g3OmCQm4KlHgfW18SGzrVyb--0Q30FW1C8fowEITzMluTtDLzfXz_C5dPN7ez2eLVOcZpanRGFRhBaEmZwZEZahiuuAWckuoLTARWDBcikKAplopqDSzoCqtOSgh6ARdDLlr3350Jmzkqg7aNA0403ZBkpJkDIsoIz3_Q5dt5128bqviIspzFtXloLRvQ_DGyrWvV-B7SbDctii3LcrvFiM-20V2KhbwS39qi4AM4LNuTP9PlHx4mz0NoV_CoXwR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1911803746</pqid></control><display><type>article</type><title>Water channels and barriers formed by claudins</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Rosenthal, Rita ; Günzel, Dorothee ; Theune, Dian ; Czichos, Carolina ; Schulzke, Jörg‐Dieter ; Fromm, Michael</creator><creatorcontrib>Rosenthal, Rita ; Günzel, Dorothee ; Theune, Dian ; Czichos, Carolina ; Schulzke, Jörg‐Dieter ; Fromm, Michael</creatorcontrib><description>Physiological studies in leaky epithelia, like kidney proximal tubules and the small intestine, have documented water transport via both transcellular and paracellular pathways. The discovery of aquaporin water channels provided a molecular basis for transcellular water movement. In contrast, the contribution, or even existence, of a specific paracellular water pathway has been disputed for a long time, until the cation channel–forming tight junction protein claudin‐2 was shown to also permit the paracellular passage of water through its pore. In proximal kidney tubules, claudin‐2–based water transport contributes 23–30% of the total water transport. Other paracellular ion channels (claudin‐10a, ‐10b, and ‐17) proved to be impermeable to water, although their pore size would be sufficient for water molecules to pass. Studies of barrier‐forming claudins, like claudin‐1 and claudin‐3, which tighten the paracellular pathway against ions and larger solutes, indicate that changes in the expression of these sealing claudins do not influence transepithelial water permeability. The present genetic, molecular, computational, and physiological studies are just now beginning to probe the mechanisms and regulation of paracellular permeation.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/nyas.13383</identifier><identifier>PMID: 28636801</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Aquaporins ; Aquaporins - metabolism ; Biological Transport ; Channels ; Claudin-2 - metabolism ; claudins ; Claudins - metabolism ; Computer applications ; Forming ; Groundwater flow ; Humans ; Ion channels ; Ions ; Kidney Tubules, Proximal - metabolism ; Kidneys ; paracellular water transport ; Permeability ; Permeation ; Physiology ; Pore size ; Porosity ; Proximal tubules ; Sealing ; Small intestine ; Solutes ; tight junction ; Tight Junctions - metabolism ; Transport ; Water - metabolism ; Water chemistry ; Water transport</subject><ispartof>Annals of the New York Academy of Sciences, 2017-06, Vol.1397 (1), p.100-109</ispartof><rights>2017 New York Academy of Sciences.</rights><rights>2017 The New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4233-ec0ab5f813e46ea8de3b6c57fa4f13f501808609858ac3cbbadc6fabdcc7ab883</citedby><cites>FETCH-LOGICAL-c4233-ec0ab5f813e46ea8de3b6c57fa4f13f501808609858ac3cbbadc6fabdcc7ab883</cites><orcidid>0000-0002-7998-7164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28636801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosenthal, Rita</creatorcontrib><creatorcontrib>Günzel, Dorothee</creatorcontrib><creatorcontrib>Theune, Dian</creatorcontrib><creatorcontrib>Czichos, Carolina</creatorcontrib><creatorcontrib>Schulzke, Jörg‐Dieter</creatorcontrib><creatorcontrib>Fromm, Michael</creatorcontrib><title>Water channels and barriers formed by claudins</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>Physiological studies in leaky epithelia, like kidney proximal tubules and the small intestine, have documented water transport via both transcellular and paracellular pathways. The discovery of aquaporin water channels provided a molecular basis for transcellular water movement. In contrast, the contribution, or even existence, of a specific paracellular water pathway has been disputed for a long time, until the cation channel–forming tight junction protein claudin‐2 was shown to also permit the paracellular passage of water through its pore. In proximal kidney tubules, claudin‐2–based water transport contributes 23–30% of the total water transport. Other paracellular ion channels (claudin‐10a, ‐10b, and ‐17) proved to be impermeable to water, although their pore size would be sufficient for water molecules to pass. Studies of barrier‐forming claudins, like claudin‐1 and claudin‐3, which tighten the paracellular pathway against ions and larger solutes, indicate that changes in the expression of these sealing claudins do not influence transepithelial water permeability. The present genetic, molecular, computational, and physiological studies are just now beginning to probe the mechanisms and regulation of paracellular permeation.</description><subject>Animals</subject><subject>Aquaporins</subject><subject>Aquaporins - metabolism</subject><subject>Biological Transport</subject><subject>Channels</subject><subject>Claudin-2 - metabolism</subject><subject>claudins</subject><subject>Claudins - metabolism</subject><subject>Computer applications</subject><subject>Forming</subject><subject>Groundwater flow</subject><subject>Humans</subject><subject>Ion channels</subject><subject>Ions</subject><subject>Kidney Tubules, Proximal - metabolism</subject><subject>Kidneys</subject><subject>paracellular water transport</subject><subject>Permeability</subject><subject>Permeation</subject><subject>Physiology</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Proximal tubules</subject><subject>Sealing</subject><subject>Small intestine</subject><subject>Solutes</subject><subject>tight junction</subject><subject>Tight Junctions - metabolism</subject><subject>Transport</subject><subject>Water - metabolism</subject><subject>Water chemistry</subject><subject>Water transport</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgipvTix9ACl5E6EyaNkmPY_gPhh5UxFN4kybY0aUzWZF-ezM7PXgwl5fAj-d9eRA6JXhK4rtyPYQpoVTQPTQmPC9Txmi2j8YYc56KMqMjdBTCEmOSiZwfolEmGGUCkzGavsLG-ES_g3OmCQm4KlHgfW18SGzrVyb--0Q30FW1C8fowEITzMluTtDLzfXz_C5dPN7ez2eLVOcZpanRGFRhBaEmZwZEZahiuuAWckuoLTARWDBcikKAplopqDSzoCqtOSgh6ARdDLlr3350Jmzkqg7aNA0403ZBkpJkDIsoIz3_Q5dt5128bqviIspzFtXloLRvQ_DGyrWvV-B7SbDctii3LcrvFiM-20V2KhbwS39qi4AM4LNuTP9PlHx4mz0NoV_CoXwR</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Rosenthal, Rita</creator><creator>Günzel, Dorothee</creator><creator>Theune, Dian</creator><creator>Czichos, Carolina</creator><creator>Schulzke, Jörg‐Dieter</creator><creator>Fromm, Michael</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7998-7164</orcidid></search><sort><creationdate>201706</creationdate><title>Water channels and barriers formed by claudins</title><author>Rosenthal, Rita ; Günzel, Dorothee ; Theune, Dian ; Czichos, Carolina ; Schulzke, Jörg‐Dieter ; Fromm, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4233-ec0ab5f813e46ea8de3b6c57fa4f13f501808609858ac3cbbadc6fabdcc7ab883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Aquaporins</topic><topic>Aquaporins - metabolism</topic><topic>Biological Transport</topic><topic>Channels</topic><topic>Claudin-2 - metabolism</topic><topic>claudins</topic><topic>Claudins - metabolism</topic><topic>Computer applications</topic><topic>Forming</topic><topic>Groundwater flow</topic><topic>Humans</topic><topic>Ion channels</topic><topic>Ions</topic><topic>Kidney Tubules, Proximal - metabolism</topic><topic>Kidneys</topic><topic>paracellular water transport</topic><topic>Permeability</topic><topic>Permeation</topic><topic>Physiology</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Proximal tubules</topic><topic>Sealing</topic><topic>Small intestine</topic><topic>Solutes</topic><topic>tight junction</topic><topic>Tight Junctions - metabolism</topic><topic>Transport</topic><topic>Water - metabolism</topic><topic>Water chemistry</topic><topic>Water transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenthal, Rita</creatorcontrib><creatorcontrib>Günzel, Dorothee</creatorcontrib><creatorcontrib>Theune, Dian</creatorcontrib><creatorcontrib>Czichos, Carolina</creatorcontrib><creatorcontrib>Schulzke, Jörg‐Dieter</creatorcontrib><creatorcontrib>Fromm, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenthal, Rita</au><au>Günzel, Dorothee</au><au>Theune, Dian</au><au>Czichos, Carolina</au><au>Schulzke, Jörg‐Dieter</au><au>Fromm, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water channels and barriers formed by claudins</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2017-06</date><risdate>2017</risdate><volume>1397</volume><issue>1</issue><spage>100</spage><epage>109</epage><pages>100-109</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>Physiological studies in leaky epithelia, like kidney proximal tubules and the small intestine, have documented water transport via both transcellular and paracellular pathways. The discovery of aquaporin water channels provided a molecular basis for transcellular water movement. In contrast, the contribution, or even existence, of a specific paracellular water pathway has been disputed for a long time, until the cation channel–forming tight junction protein claudin‐2 was shown to also permit the paracellular passage of water through its pore. In proximal kidney tubules, claudin‐2–based water transport contributes 23–30% of the total water transport. Other paracellular ion channels (claudin‐10a, ‐10b, and ‐17) proved to be impermeable to water, although their pore size would be sufficient for water molecules to pass. Studies of barrier‐forming claudins, like claudin‐1 and claudin‐3, which tighten the paracellular pathway against ions and larger solutes, indicate that changes in the expression of these sealing claudins do not influence transepithelial water permeability. The present genetic, molecular, computational, and physiological studies are just now beginning to probe the mechanisms and regulation of paracellular permeation.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28636801</pmid><doi>10.1111/nyas.13383</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7998-7164</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2017-06, Vol.1397 (1), p.100-109
issn 0077-8923
1749-6632
language eng
recordid cdi_proquest_miscellaneous_1912608883
source Wiley-Blackwell Read & Publish Collection
subjects Animals
Aquaporins
Aquaporins - metabolism
Biological Transport
Channels
Claudin-2 - metabolism
claudins
Claudins - metabolism
Computer applications
Forming
Groundwater flow
Humans
Ion channels
Ions
Kidney Tubules, Proximal - metabolism
Kidneys
paracellular water transport
Permeability
Permeation
Physiology
Pore size
Porosity
Proximal tubules
Sealing
Small intestine
Solutes
tight junction
Tight Junctions - metabolism
Transport
Water - metabolism
Water chemistry
Water transport
title Water channels and barriers formed by claudins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20channels%20and%20barriers%20formed%20by%20claudins&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Rosenthal,%20Rita&rft.date=2017-06&rft.volume=1397&rft.issue=1&rft.spage=100&rft.epage=109&rft.pages=100-109&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/nyas.13383&rft_dat=%3Cproquest_cross%3E1911803746%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4233-ec0ab5f813e46ea8de3b6c57fa4f13f501808609858ac3cbbadc6fabdcc7ab883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1911803746&rft_id=info:pmid/28636801&rfr_iscdi=true