Loading…
Water channels and barriers formed by claudins
Physiological studies in leaky epithelia, like kidney proximal tubules and the small intestine, have documented water transport via both transcellular and paracellular pathways. The discovery of aquaporin water channels provided a molecular basis for transcellular water movement. In contrast, the co...
Saved in:
Published in: | Annals of the New York Academy of Sciences 2017-06, Vol.1397 (1), p.100-109 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4233-ec0ab5f813e46ea8de3b6c57fa4f13f501808609858ac3cbbadc6fabdcc7ab883 |
---|---|
cites | cdi_FETCH-LOGICAL-c4233-ec0ab5f813e46ea8de3b6c57fa4f13f501808609858ac3cbbadc6fabdcc7ab883 |
container_end_page | 109 |
container_issue | 1 |
container_start_page | 100 |
container_title | Annals of the New York Academy of Sciences |
container_volume | 1397 |
creator | Rosenthal, Rita Günzel, Dorothee Theune, Dian Czichos, Carolina Schulzke, Jörg‐Dieter Fromm, Michael |
description | Physiological studies in leaky epithelia, like kidney proximal tubules and the small intestine, have documented water transport via both transcellular and paracellular pathways. The discovery of aquaporin water channels provided a molecular basis for transcellular water movement. In contrast, the contribution, or even existence, of a specific paracellular water pathway has been disputed for a long time, until the cation channel–forming tight junction protein claudin‐2 was shown to also permit the paracellular passage of water through its pore. In proximal kidney tubules, claudin‐2–based water transport contributes 23–30% of the total water transport. Other paracellular ion channels (claudin‐10a, ‐10b, and ‐17) proved to be impermeable to water, although their pore size would be sufficient for water molecules to pass. Studies of barrier‐forming claudins, like claudin‐1 and claudin‐3, which tighten the paracellular pathway against ions and larger solutes, indicate that changes in the expression of these sealing claudins do not influence transepithelial water permeability. The present genetic, molecular, computational, and physiological studies are just now beginning to probe the mechanisms and regulation of paracellular permeation. |
doi_str_mv | 10.1111/nyas.13383 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1912608883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1911803746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4233-ec0ab5f813e46ea8de3b6c57fa4f13f501808609858ac3cbbadc6fabdcc7ab883</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgipvTix9ACl5E6EyaNkmPY_gPhh5UxFN4kybY0aUzWZF-ezM7PXgwl5fAj-d9eRA6JXhK4rtyPYQpoVTQPTQmPC9Txmi2j8YYc56KMqMjdBTCEmOSiZwfolEmGGUCkzGavsLG-ES_g3OmCQm4KlHgfW18SGzrVyb--0Q30FW1C8fowEITzMluTtDLzfXz_C5dPN7ez2eLVOcZpanRGFRhBaEmZwZEZahiuuAWckuoLTARWDBcikKAplopqDSzoCqtOSgh6ARdDLlr3350Jmzkqg7aNA0403ZBkpJkDIsoIz3_Q5dt5128bqviIspzFtXloLRvQ_DGyrWvV-B7SbDctii3LcrvFiM-20V2KhbwS39qi4AM4LNuTP9PlHx4mz0NoV_CoXwR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1911803746</pqid></control><display><type>article</type><title>Water channels and barriers formed by claudins</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Rosenthal, Rita ; Günzel, Dorothee ; Theune, Dian ; Czichos, Carolina ; Schulzke, Jörg‐Dieter ; Fromm, Michael</creator><creatorcontrib>Rosenthal, Rita ; Günzel, Dorothee ; Theune, Dian ; Czichos, Carolina ; Schulzke, Jörg‐Dieter ; Fromm, Michael</creatorcontrib><description>Physiological studies in leaky epithelia, like kidney proximal tubules and the small intestine, have documented water transport via both transcellular and paracellular pathways. The discovery of aquaporin water channels provided a molecular basis for transcellular water movement. In contrast, the contribution, or even existence, of a specific paracellular water pathway has been disputed for a long time, until the cation channel–forming tight junction protein claudin‐2 was shown to also permit the paracellular passage of water through its pore. In proximal kidney tubules, claudin‐2–based water transport contributes 23–30% of the total water transport. Other paracellular ion channels (claudin‐10a, ‐10b, and ‐17) proved to be impermeable to water, although their pore size would be sufficient for water molecules to pass. Studies of barrier‐forming claudins, like claudin‐1 and claudin‐3, which tighten the paracellular pathway against ions and larger solutes, indicate that changes in the expression of these sealing claudins do not influence transepithelial water permeability. The present genetic, molecular, computational, and physiological studies are just now beginning to probe the mechanisms and regulation of paracellular permeation.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/nyas.13383</identifier><identifier>PMID: 28636801</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Aquaporins ; Aquaporins - metabolism ; Biological Transport ; Channels ; Claudin-2 - metabolism ; claudins ; Claudins - metabolism ; Computer applications ; Forming ; Groundwater flow ; Humans ; Ion channels ; Ions ; Kidney Tubules, Proximal - metabolism ; Kidneys ; paracellular water transport ; Permeability ; Permeation ; Physiology ; Pore size ; Porosity ; Proximal tubules ; Sealing ; Small intestine ; Solutes ; tight junction ; Tight Junctions - metabolism ; Transport ; Water - metabolism ; Water chemistry ; Water transport</subject><ispartof>Annals of the New York Academy of Sciences, 2017-06, Vol.1397 (1), p.100-109</ispartof><rights>2017 New York Academy of Sciences.</rights><rights>2017 The New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4233-ec0ab5f813e46ea8de3b6c57fa4f13f501808609858ac3cbbadc6fabdcc7ab883</citedby><cites>FETCH-LOGICAL-c4233-ec0ab5f813e46ea8de3b6c57fa4f13f501808609858ac3cbbadc6fabdcc7ab883</cites><orcidid>0000-0002-7998-7164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28636801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosenthal, Rita</creatorcontrib><creatorcontrib>Günzel, Dorothee</creatorcontrib><creatorcontrib>Theune, Dian</creatorcontrib><creatorcontrib>Czichos, Carolina</creatorcontrib><creatorcontrib>Schulzke, Jörg‐Dieter</creatorcontrib><creatorcontrib>Fromm, Michael</creatorcontrib><title>Water channels and barriers formed by claudins</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>Physiological studies in leaky epithelia, like kidney proximal tubules and the small intestine, have documented water transport via both transcellular and paracellular pathways. The discovery of aquaporin water channels provided a molecular basis for transcellular water movement. In contrast, the contribution, or even existence, of a specific paracellular water pathway has been disputed for a long time, until the cation channel–forming tight junction protein claudin‐2 was shown to also permit the paracellular passage of water through its pore. In proximal kidney tubules, claudin‐2–based water transport contributes 23–30% of the total water transport. Other paracellular ion channels (claudin‐10a, ‐10b, and ‐17) proved to be impermeable to water, although their pore size would be sufficient for water molecules to pass. Studies of barrier‐forming claudins, like claudin‐1 and claudin‐3, which tighten the paracellular pathway against ions and larger solutes, indicate that changes in the expression of these sealing claudins do not influence transepithelial water permeability. The present genetic, molecular, computational, and physiological studies are just now beginning to probe the mechanisms and regulation of paracellular permeation.</description><subject>Animals</subject><subject>Aquaporins</subject><subject>Aquaporins - metabolism</subject><subject>Biological Transport</subject><subject>Channels</subject><subject>Claudin-2 - metabolism</subject><subject>claudins</subject><subject>Claudins - metabolism</subject><subject>Computer applications</subject><subject>Forming</subject><subject>Groundwater flow</subject><subject>Humans</subject><subject>Ion channels</subject><subject>Ions</subject><subject>Kidney Tubules, Proximal - metabolism</subject><subject>Kidneys</subject><subject>paracellular water transport</subject><subject>Permeability</subject><subject>Permeation</subject><subject>Physiology</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Proximal tubules</subject><subject>Sealing</subject><subject>Small intestine</subject><subject>Solutes</subject><subject>tight junction</subject><subject>Tight Junctions - metabolism</subject><subject>Transport</subject><subject>Water - metabolism</subject><subject>Water chemistry</subject><subject>Water transport</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgipvTix9ACl5E6EyaNkmPY_gPhh5UxFN4kybY0aUzWZF-ezM7PXgwl5fAj-d9eRA6JXhK4rtyPYQpoVTQPTQmPC9Txmi2j8YYc56KMqMjdBTCEmOSiZwfolEmGGUCkzGavsLG-ES_g3OmCQm4KlHgfW18SGzrVyb--0Q30FW1C8fowEITzMluTtDLzfXz_C5dPN7ez2eLVOcZpanRGFRhBaEmZwZEZahiuuAWckuoLTARWDBcikKAplopqDSzoCqtOSgh6ARdDLlr3350Jmzkqg7aNA0403ZBkpJkDIsoIz3_Q5dt5128bqviIspzFtXloLRvQ_DGyrWvV-B7SbDctii3LcrvFiM-20V2KhbwS39qi4AM4LNuTP9PlHx4mz0NoV_CoXwR</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Rosenthal, Rita</creator><creator>Günzel, Dorothee</creator><creator>Theune, Dian</creator><creator>Czichos, Carolina</creator><creator>Schulzke, Jörg‐Dieter</creator><creator>Fromm, Michael</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7998-7164</orcidid></search><sort><creationdate>201706</creationdate><title>Water channels and barriers formed by claudins</title><author>Rosenthal, Rita ; Günzel, Dorothee ; Theune, Dian ; Czichos, Carolina ; Schulzke, Jörg‐Dieter ; Fromm, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4233-ec0ab5f813e46ea8de3b6c57fa4f13f501808609858ac3cbbadc6fabdcc7ab883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Aquaporins</topic><topic>Aquaporins - metabolism</topic><topic>Biological Transport</topic><topic>Channels</topic><topic>Claudin-2 - metabolism</topic><topic>claudins</topic><topic>Claudins - metabolism</topic><topic>Computer applications</topic><topic>Forming</topic><topic>Groundwater flow</topic><topic>Humans</topic><topic>Ion channels</topic><topic>Ions</topic><topic>Kidney Tubules, Proximal - metabolism</topic><topic>Kidneys</topic><topic>paracellular water transport</topic><topic>Permeability</topic><topic>Permeation</topic><topic>Physiology</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Proximal tubules</topic><topic>Sealing</topic><topic>Small intestine</topic><topic>Solutes</topic><topic>tight junction</topic><topic>Tight Junctions - metabolism</topic><topic>Transport</topic><topic>Water - metabolism</topic><topic>Water chemistry</topic><topic>Water transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenthal, Rita</creatorcontrib><creatorcontrib>Günzel, Dorothee</creatorcontrib><creatorcontrib>Theune, Dian</creatorcontrib><creatorcontrib>Czichos, Carolina</creatorcontrib><creatorcontrib>Schulzke, Jörg‐Dieter</creatorcontrib><creatorcontrib>Fromm, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenthal, Rita</au><au>Günzel, Dorothee</au><au>Theune, Dian</au><au>Czichos, Carolina</au><au>Schulzke, Jörg‐Dieter</au><au>Fromm, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water channels and barriers formed by claudins</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2017-06</date><risdate>2017</risdate><volume>1397</volume><issue>1</issue><spage>100</spage><epage>109</epage><pages>100-109</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>Physiological studies in leaky epithelia, like kidney proximal tubules and the small intestine, have documented water transport via both transcellular and paracellular pathways. The discovery of aquaporin water channels provided a molecular basis for transcellular water movement. In contrast, the contribution, or even existence, of a specific paracellular water pathway has been disputed for a long time, until the cation channel–forming tight junction protein claudin‐2 was shown to also permit the paracellular passage of water through its pore. In proximal kidney tubules, claudin‐2–based water transport contributes 23–30% of the total water transport. Other paracellular ion channels (claudin‐10a, ‐10b, and ‐17) proved to be impermeable to water, although their pore size would be sufficient for water molecules to pass. Studies of barrier‐forming claudins, like claudin‐1 and claudin‐3, which tighten the paracellular pathway against ions and larger solutes, indicate that changes in the expression of these sealing claudins do not influence transepithelial water permeability. The present genetic, molecular, computational, and physiological studies are just now beginning to probe the mechanisms and regulation of paracellular permeation.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28636801</pmid><doi>10.1111/nyas.13383</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7998-7164</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0077-8923 |
ispartof | Annals of the New York Academy of Sciences, 2017-06, Vol.1397 (1), p.100-109 |
issn | 0077-8923 1749-6632 |
language | eng |
recordid | cdi_proquest_miscellaneous_1912608883 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animals Aquaporins Aquaporins - metabolism Biological Transport Channels Claudin-2 - metabolism claudins Claudins - metabolism Computer applications Forming Groundwater flow Humans Ion channels Ions Kidney Tubules, Proximal - metabolism Kidneys paracellular water transport Permeability Permeation Physiology Pore size Porosity Proximal tubules Sealing Small intestine Solutes tight junction Tight Junctions - metabolism Transport Water - metabolism Water chemistry Water transport |
title | Water channels and barriers formed by claudins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20channels%20and%20barriers%20formed%20by%20claudins&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Rosenthal,%20Rita&rft.date=2017-06&rft.volume=1397&rft.issue=1&rft.spage=100&rft.epage=109&rft.pages=100-109&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/nyas.13383&rft_dat=%3Cproquest_cross%3E1911803746%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4233-ec0ab5f813e46ea8de3b6c57fa4f13f501808609858ac3cbbadc6fabdcc7ab883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1911803746&rft_id=info:pmid/28636801&rfr_iscdi=true |