Loading…

Charge Transport in Molecular Materials: An Assessment of Computational Methods

The booming field of molecular electronics has fostered a surge of computational research on electronic properties of organic molecular solids. In particular, with respect to a microscopic understanding of transport and loss mechanisms, theoretical studies assume an ever-increasing role. Owing to th...

Full description

Saved in:
Bibliographic Details
Published in:Chemical reviews 2017-08, Vol.117 (15), p.10319-10357
Main Authors: Oberhofer, Harald, Reuter, Karsten, Blumberger, Jochen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The booming field of molecular electronics has fostered a surge of computational research on electronic properties of organic molecular solids. In particular, with respect to a microscopic understanding of transport and loss mechanisms, theoretical studies assume an ever-increasing role. Owing to the tremendous diversity of organic molecular materials, a great number of computational methods have been put forward to suit every possible charge transport regime, material, and need for accuracy. With this review article we aim at providing a compendium of the available methods, their theoretical foundations, and their ranges of validity. We illustrate these through applications found in the literature. The focus is on methods available for organic molecular crystals, but mention is made wherever techniques are suitable for use in other related materials such as disordered or polymeric systems.
ISSN:0009-2665
1520-6890
DOI:10.1021/acs.chemrev.7b00086