Loading…
Role of Polymeric Coating on the Phosphate Availability as a Fertilizer: Insight from Phosphate Release by Castor Polyurethane Coatings
The coating of fertilizers with polymers is an acknowledged strategy for controlling the release of nutrients and their availability in soil. However, its effectiveness in the case of soluble phosphate fertilizers is still uncertain, and information is lacking concerning the chemical properties and...
Saved in:
Published in: | Journal of agricultural and food chemistry 2017-07, Vol.65 (29), p.5890-5895 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The coating of fertilizers with polymers is an acknowledged strategy for controlling the release of nutrients and their availability in soil. However, its effectiveness in the case of soluble phosphate fertilizers is still uncertain, and information is lacking concerning the chemical properties and structures of such coatings. Here, an oil-based hydrophobic polymer system (polyurethane) is proposed for the control of the release of phosphorus from diammonium phosphate (DAP) granules. This material was systematically characterized, with evaluation of the delivery mechanism and the availability of phosphate in an acid soil. The results indicated that thicker coatings can change the maximum nutrient availability toward longer periods, such as 4.5–7.5 wt % DAP coated, that presented the highest concentrations at 336 h, as compared to 168 h for uncoated DAP. In contrast, DAP treated with 9.0 wt % began to increase the concentration after 168 h until it results in maximum release at 672 h. These effects could be attributed to the homogeneity of the polymer and the porosity. The strategy successfully provided long-term availability of a phosphate source. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.7b01686 |