Loading…
Scalable Multi-View Semi-Supervised Classification via Adaptive Regression
With the advent of multi-view data, multi-view learning has become an important research direction in machine learning and image processing. Considering the difficulty of obtaining labeled data in many machine learning applications, we focus on the multi-view semi-supervised classification problem....
Saved in:
Published in: | IEEE transactions on image processing 2017-09, Vol.26 (9), p.4283-4296 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-51941e88c9d790c7bf49193320145f9d3ccc49988a1ffdbeb2f595b5bf57c003 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-51941e88c9d790c7bf49193320145f9d3ccc49988a1ffdbeb2f595b5bf57c003 |
container_end_page | 4296 |
container_issue | 9 |
container_start_page | 4283 |
container_title | IEEE transactions on image processing |
container_volume | 26 |
creator | Tao, Hong Hou, Chenping Nie, Feiping Zhu, Jubo Yi, Dongyun |
description | With the advent of multi-view data, multi-view learning has become an important research direction in machine learning and image processing. Considering the difficulty of obtaining labeled data in many machine learning applications, we focus on the multi-view semi-supervised classification problem. In this paper, we propose an algorithm named multi-view semi-supervised classification via adaptive regression (MVAR) to address this problem. Specifically, regression-based loss functions with ℓ 2,1 matrix norm are adopted for each view and the final objective function is formulated as the linear weighted combination of all the loss functions. An efficient algorithm with proved convergence is developed to solve the non-smooth ℓ 2,1 -norm minimization problem. Regressing to class labels directly makes the proposed algorithm efficient in calculation and can be applied to large-scale data sets. The adaptively optimized weight coefficients balance the contributions of different views automatically, which makes the performance robust against the existence of low-quality views. With the learned projection matrices and bias vectors, predictions for out-of-sample data can be easily made. To validate the effectiveness of MVAR, comparisons are made with some benchmark methods on realworld data sets and in the scene classification scenario as well. The experimental results demonstrate the effectiveness of our proposed algorithm. |
doi_str_mv | 10.1109/TIP.2017.2717191 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1913396679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7953537</ieee_id><sourcerecordid>1913396679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-51941e88c9d790c7bf49193320145f9d3ccc49988a1ffdbeb2f595b5bf57c003</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMobk7vBUF66U1nTtI0zeUYfkwmihvehjQ9kUi7zqad-O9t2fTqHHg_eHkIuQQ6BaDqdr14nTIKcsokSFBwRMagEogpTdhx_1MhYwmJGpGzED4phURAekpGLEsTYCkbk6eVNaXJS4yeu7L18bvH72iFlY9X3RabnQ9YRPPShOCdt6b19SbaeRPNCrNt_Q6jN_xosFfrzTk5caYMeHG4E7K-v1vPH-Ply8NiPlvGloNqYzEsxCyzqpCKWpm7RIHinA3rnCq4tTZRKssMOFfkmDMnlMhF7oS0lPIJudnXbpv6q8PQ6soHi2VpNlh3QfcYOFdpKlVvpXurbeoQGnR62_jKND8aqB4A6h6gHgDqA8A-cn1o7_IKi__AH7HecLU3eET8l6USXHDJfwEmCXQT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913396679</pqid></control><display><type>article</type><title>Scalable Multi-View Semi-Supervised Classification via Adaptive Regression</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tao, Hong ; Hou, Chenping ; Nie, Feiping ; Zhu, Jubo ; Yi, Dongyun</creator><creatorcontrib>Tao, Hong ; Hou, Chenping ; Nie, Feiping ; Zhu, Jubo ; Yi, Dongyun</creatorcontrib><description>With the advent of multi-view data, multi-view learning has become an important research direction in machine learning and image processing. Considering the difficulty of obtaining labeled data in many machine learning applications, we focus on the multi-view semi-supervised classification problem. In this paper, we propose an algorithm named multi-view semi-supervised classification via adaptive regression (MVAR) to address this problem. Specifically, regression-based loss functions with ℓ 2,1 matrix norm are adopted for each view and the final objective function is formulated as the linear weighted combination of all the loss functions. An efficient algorithm with proved convergence is developed to solve the non-smooth ℓ 2,1 -norm minimization problem. Regressing to class labels directly makes the proposed algorithm efficient in calculation and can be applied to large-scale data sets. The adaptively optimized weight coefficients balance the contributions of different views automatically, which makes the performance robust against the existence of low-quality views. With the learned projection matrices and bias vectors, predictions for out-of-sample data can be easily made. To validate the effectiveness of MVAR, comparisons are made with some benchmark methods on realworld data sets and in the scene classification scenario as well. The experimental results demonstrate the effectiveness of our proposed algorithm.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2717191</identifier><identifier>PMID: 28641262</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; classification ; Computational modeling ; Kernel ; Minimization ; Multi-view ; norm minimization ; Prediction algorithms ; semi-supervised learning ; Semisupervised learning ; Training</subject><ispartof>IEEE transactions on image processing, 2017-09, Vol.26 (9), p.4283-4296</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-51941e88c9d790c7bf49193320145f9d3ccc49988a1ffdbeb2f595b5bf57c003</citedby><cites>FETCH-LOGICAL-c319t-51941e88c9d790c7bf49193320145f9d3ccc49988a1ffdbeb2f595b5bf57c003</cites><orcidid>0000-0002-9335-0469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7953537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28641262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tao, Hong</creatorcontrib><creatorcontrib>Hou, Chenping</creatorcontrib><creatorcontrib>Nie, Feiping</creatorcontrib><creatorcontrib>Zhu, Jubo</creatorcontrib><creatorcontrib>Yi, Dongyun</creatorcontrib><title>Scalable Multi-View Semi-Supervised Classification via Adaptive Regression</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>With the advent of multi-view data, multi-view learning has become an important research direction in machine learning and image processing. Considering the difficulty of obtaining labeled data in many machine learning applications, we focus on the multi-view semi-supervised classification problem. In this paper, we propose an algorithm named multi-view semi-supervised classification via adaptive regression (MVAR) to address this problem. Specifically, regression-based loss functions with ℓ 2,1 matrix norm are adopted for each view and the final objective function is formulated as the linear weighted combination of all the loss functions. An efficient algorithm with proved convergence is developed to solve the non-smooth ℓ 2,1 -norm minimization problem. Regressing to class labels directly makes the proposed algorithm efficient in calculation and can be applied to large-scale data sets. The adaptively optimized weight coefficients balance the contributions of different views automatically, which makes the performance robust against the existence of low-quality views. With the learned projection matrices and bias vectors, predictions for out-of-sample data can be easily made. To validate the effectiveness of MVAR, comparisons are made with some benchmark methods on realworld data sets and in the scene classification scenario as well. The experimental results demonstrate the effectiveness of our proposed algorithm.</description><subject>Algorithm design and analysis</subject><subject>classification</subject><subject>Computational modeling</subject><subject>Kernel</subject><subject>Minimization</subject><subject>Multi-view</subject><subject>norm minimization</subject><subject>Prediction algorithms</subject><subject>semi-supervised learning</subject><subject>Semisupervised learning</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMobk7vBUF66U1nTtI0zeUYfkwmihvehjQ9kUi7zqad-O9t2fTqHHg_eHkIuQQ6BaDqdr14nTIKcsokSFBwRMagEogpTdhx_1MhYwmJGpGzED4phURAekpGLEsTYCkbk6eVNaXJS4yeu7L18bvH72iFlY9X3RabnQ9YRPPShOCdt6b19SbaeRPNCrNt_Q6jN_xosFfrzTk5caYMeHG4E7K-v1vPH-Ply8NiPlvGloNqYzEsxCyzqpCKWpm7RIHinA3rnCq4tTZRKssMOFfkmDMnlMhF7oS0lPIJudnXbpv6q8PQ6soHi2VpNlh3QfcYOFdpKlVvpXurbeoQGnR62_jKND8aqB4A6h6gHgDqA8A-cn1o7_IKi__AH7HecLU3eET8l6USXHDJfwEmCXQT</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Tao, Hong</creator><creator>Hou, Chenping</creator><creator>Nie, Feiping</creator><creator>Zhu, Jubo</creator><creator>Yi, Dongyun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9335-0469</orcidid></search><sort><creationdate>201709</creationdate><title>Scalable Multi-View Semi-Supervised Classification via Adaptive Regression</title><author>Tao, Hong ; Hou, Chenping ; Nie, Feiping ; Zhu, Jubo ; Yi, Dongyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-51941e88c9d790c7bf49193320145f9d3ccc49988a1ffdbeb2f595b5bf57c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>classification</topic><topic>Computational modeling</topic><topic>Kernel</topic><topic>Minimization</topic><topic>Multi-view</topic><topic>norm minimization</topic><topic>Prediction algorithms</topic><topic>semi-supervised learning</topic><topic>Semisupervised learning</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Hong</creatorcontrib><creatorcontrib>Hou, Chenping</creatorcontrib><creatorcontrib>Nie, Feiping</creatorcontrib><creatorcontrib>Zhu, Jubo</creatorcontrib><creatorcontrib>Yi, Dongyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Hong</au><au>Hou, Chenping</au><au>Nie, Feiping</au><au>Zhu, Jubo</au><au>Yi, Dongyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Multi-View Semi-Supervised Classification via Adaptive Regression</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2017-09</date><risdate>2017</risdate><volume>26</volume><issue>9</issue><spage>4283</spage><epage>4296</epage><pages>4283-4296</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>With the advent of multi-view data, multi-view learning has become an important research direction in machine learning and image processing. Considering the difficulty of obtaining labeled data in many machine learning applications, we focus on the multi-view semi-supervised classification problem. In this paper, we propose an algorithm named multi-view semi-supervised classification via adaptive regression (MVAR) to address this problem. Specifically, regression-based loss functions with ℓ 2,1 matrix norm are adopted for each view and the final objective function is formulated as the linear weighted combination of all the loss functions. An efficient algorithm with proved convergence is developed to solve the non-smooth ℓ 2,1 -norm minimization problem. Regressing to class labels directly makes the proposed algorithm efficient in calculation and can be applied to large-scale data sets. The adaptively optimized weight coefficients balance the contributions of different views automatically, which makes the performance robust against the existence of low-quality views. With the learned projection matrices and bias vectors, predictions for out-of-sample data can be easily made. To validate the effectiveness of MVAR, comparisons are made with some benchmark methods on realworld data sets and in the scene classification scenario as well. The experimental results demonstrate the effectiveness of our proposed algorithm.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28641262</pmid><doi>10.1109/TIP.2017.2717191</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9335-0469</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2017-09, Vol.26 (9), p.4283-4296 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_1913396679 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithm design and analysis classification Computational modeling Kernel Minimization Multi-view norm minimization Prediction algorithms semi-supervised learning Semisupervised learning Training |
title | Scalable Multi-View Semi-Supervised Classification via Adaptive Regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Multi-View%20Semi-Supervised%20Classification%20via%20Adaptive%20Regression&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Tao,%20Hong&rft.date=2017-09&rft.volume=26&rft.issue=9&rft.spage=4283&rft.epage=4296&rft.pages=4283-4296&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2717191&rft_dat=%3Cproquest_cross%3E1913396679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-51941e88c9d790c7bf49193320145f9d3ccc49988a1ffdbeb2f595b5bf57c003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1913396679&rft_id=info:pmid/28641262&rft_ieee_id=7953537&rfr_iscdi=true |