Loading…

Scalable Multi-View Semi-Supervised Classification via Adaptive Regression

With the advent of multi-view data, multi-view learning has become an important research direction in machine learning and image processing. Considering the difficulty of obtaining labeled data in many machine learning applications, we focus on the multi-view semi-supervised classification problem....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2017-09, Vol.26 (9), p.4283-4296
Main Authors: Tao, Hong, Hou, Chenping, Nie, Feiping, Zhu, Jubo, Yi, Dongyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-51941e88c9d790c7bf49193320145f9d3ccc49988a1ffdbeb2f595b5bf57c003
cites cdi_FETCH-LOGICAL-c319t-51941e88c9d790c7bf49193320145f9d3ccc49988a1ffdbeb2f595b5bf57c003
container_end_page 4296
container_issue 9
container_start_page 4283
container_title IEEE transactions on image processing
container_volume 26
creator Tao, Hong
Hou, Chenping
Nie, Feiping
Zhu, Jubo
Yi, Dongyun
description With the advent of multi-view data, multi-view learning has become an important research direction in machine learning and image processing. Considering the difficulty of obtaining labeled data in many machine learning applications, we focus on the multi-view semi-supervised classification problem. In this paper, we propose an algorithm named multi-view semi-supervised classification via adaptive regression (MVAR) to address this problem. Specifically, regression-based loss functions with ℓ 2,1 matrix norm are adopted for each view and the final objective function is formulated as the linear weighted combination of all the loss functions. An efficient algorithm with proved convergence is developed to solve the non-smooth ℓ 2,1 -norm minimization problem. Regressing to class labels directly makes the proposed algorithm efficient in calculation and can be applied to large-scale data sets. The adaptively optimized weight coefficients balance the contributions of different views automatically, which makes the performance robust against the existence of low-quality views. With the learned projection matrices and bias vectors, predictions for out-of-sample data can be easily made. To validate the effectiveness of MVAR, comparisons are made with some benchmark methods on realworld data sets and in the scene classification scenario as well. The experimental results demonstrate the effectiveness of our proposed algorithm.
doi_str_mv 10.1109/TIP.2017.2717191
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1913396679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7953537</ieee_id><sourcerecordid>1913396679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-51941e88c9d790c7bf49193320145f9d3ccc49988a1ffdbeb2f595b5bf57c003</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMobk7vBUF66U1nTtI0zeUYfkwmihvehjQ9kUi7zqad-O9t2fTqHHg_eHkIuQQ6BaDqdr14nTIKcsokSFBwRMagEogpTdhx_1MhYwmJGpGzED4phURAekpGLEsTYCkbk6eVNaXJS4yeu7L18bvH72iFlY9X3RabnQ9YRPPShOCdt6b19SbaeRPNCrNt_Q6jN_xosFfrzTk5caYMeHG4E7K-v1vPH-Ply8NiPlvGloNqYzEsxCyzqpCKWpm7RIHinA3rnCq4tTZRKssMOFfkmDMnlMhF7oS0lPIJudnXbpv6q8PQ6soHi2VpNlh3QfcYOFdpKlVvpXurbeoQGnR62_jKND8aqB4A6h6gHgDqA8A-cn1o7_IKi__AH7HecLU3eET8l6USXHDJfwEmCXQT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913396679</pqid></control><display><type>article</type><title>Scalable Multi-View Semi-Supervised Classification via Adaptive Regression</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tao, Hong ; Hou, Chenping ; Nie, Feiping ; Zhu, Jubo ; Yi, Dongyun</creator><creatorcontrib>Tao, Hong ; Hou, Chenping ; Nie, Feiping ; Zhu, Jubo ; Yi, Dongyun</creatorcontrib><description>With the advent of multi-view data, multi-view learning has become an important research direction in machine learning and image processing. Considering the difficulty of obtaining labeled data in many machine learning applications, we focus on the multi-view semi-supervised classification problem. In this paper, we propose an algorithm named multi-view semi-supervised classification via adaptive regression (MVAR) to address this problem. Specifically, regression-based loss functions with ℓ 2,1 matrix norm are adopted for each view and the final objective function is formulated as the linear weighted combination of all the loss functions. An efficient algorithm with proved convergence is developed to solve the non-smooth ℓ 2,1 -norm minimization problem. Regressing to class labels directly makes the proposed algorithm efficient in calculation and can be applied to large-scale data sets. The adaptively optimized weight coefficients balance the contributions of different views automatically, which makes the performance robust against the existence of low-quality views. With the learned projection matrices and bias vectors, predictions for out-of-sample data can be easily made. To validate the effectiveness of MVAR, comparisons are made with some benchmark methods on realworld data sets and in the scene classification scenario as well. The experimental results demonstrate the effectiveness of our proposed algorithm.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2717191</identifier><identifier>PMID: 28641262</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; classification ; Computational modeling ; Kernel ; Minimization ; Multi-view ; norm minimization ; Prediction algorithms ; semi-supervised learning ; Semisupervised learning ; Training</subject><ispartof>IEEE transactions on image processing, 2017-09, Vol.26 (9), p.4283-4296</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-51941e88c9d790c7bf49193320145f9d3ccc49988a1ffdbeb2f595b5bf57c003</citedby><cites>FETCH-LOGICAL-c319t-51941e88c9d790c7bf49193320145f9d3ccc49988a1ffdbeb2f595b5bf57c003</cites><orcidid>0000-0002-9335-0469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7953537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28641262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tao, Hong</creatorcontrib><creatorcontrib>Hou, Chenping</creatorcontrib><creatorcontrib>Nie, Feiping</creatorcontrib><creatorcontrib>Zhu, Jubo</creatorcontrib><creatorcontrib>Yi, Dongyun</creatorcontrib><title>Scalable Multi-View Semi-Supervised Classification via Adaptive Regression</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>With the advent of multi-view data, multi-view learning has become an important research direction in machine learning and image processing. Considering the difficulty of obtaining labeled data in many machine learning applications, we focus on the multi-view semi-supervised classification problem. In this paper, we propose an algorithm named multi-view semi-supervised classification via adaptive regression (MVAR) to address this problem. Specifically, regression-based loss functions with ℓ 2,1 matrix norm are adopted for each view and the final objective function is formulated as the linear weighted combination of all the loss functions. An efficient algorithm with proved convergence is developed to solve the non-smooth ℓ 2,1 -norm minimization problem. Regressing to class labels directly makes the proposed algorithm efficient in calculation and can be applied to large-scale data sets. The adaptively optimized weight coefficients balance the contributions of different views automatically, which makes the performance robust against the existence of low-quality views. With the learned projection matrices and bias vectors, predictions for out-of-sample data can be easily made. To validate the effectiveness of MVAR, comparisons are made with some benchmark methods on realworld data sets and in the scene classification scenario as well. The experimental results demonstrate the effectiveness of our proposed algorithm.</description><subject>Algorithm design and analysis</subject><subject>classification</subject><subject>Computational modeling</subject><subject>Kernel</subject><subject>Minimization</subject><subject>Multi-view</subject><subject>norm minimization</subject><subject>Prediction algorithms</subject><subject>semi-supervised learning</subject><subject>Semisupervised learning</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMobk7vBUF66U1nTtI0zeUYfkwmihvehjQ9kUi7zqad-O9t2fTqHHg_eHkIuQQ6BaDqdr14nTIKcsokSFBwRMagEogpTdhx_1MhYwmJGpGzED4phURAekpGLEsTYCkbk6eVNaXJS4yeu7L18bvH72iFlY9X3RabnQ9YRPPShOCdt6b19SbaeRPNCrNt_Q6jN_xosFfrzTk5caYMeHG4E7K-v1vPH-Ply8NiPlvGloNqYzEsxCyzqpCKWpm7RIHinA3rnCq4tTZRKssMOFfkmDMnlMhF7oS0lPIJudnXbpv6q8PQ6soHi2VpNlh3QfcYOFdpKlVvpXurbeoQGnR62_jKND8aqB4A6h6gHgDqA8A-cn1o7_IKi__AH7HecLU3eET8l6USXHDJfwEmCXQT</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Tao, Hong</creator><creator>Hou, Chenping</creator><creator>Nie, Feiping</creator><creator>Zhu, Jubo</creator><creator>Yi, Dongyun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9335-0469</orcidid></search><sort><creationdate>201709</creationdate><title>Scalable Multi-View Semi-Supervised Classification via Adaptive Regression</title><author>Tao, Hong ; Hou, Chenping ; Nie, Feiping ; Zhu, Jubo ; Yi, Dongyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-51941e88c9d790c7bf49193320145f9d3ccc49988a1ffdbeb2f595b5bf57c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>classification</topic><topic>Computational modeling</topic><topic>Kernel</topic><topic>Minimization</topic><topic>Multi-view</topic><topic>norm minimization</topic><topic>Prediction algorithms</topic><topic>semi-supervised learning</topic><topic>Semisupervised learning</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Hong</creatorcontrib><creatorcontrib>Hou, Chenping</creatorcontrib><creatorcontrib>Nie, Feiping</creatorcontrib><creatorcontrib>Zhu, Jubo</creatorcontrib><creatorcontrib>Yi, Dongyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Hong</au><au>Hou, Chenping</au><au>Nie, Feiping</au><au>Zhu, Jubo</au><au>Yi, Dongyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Multi-View Semi-Supervised Classification via Adaptive Regression</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2017-09</date><risdate>2017</risdate><volume>26</volume><issue>9</issue><spage>4283</spage><epage>4296</epage><pages>4283-4296</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>With the advent of multi-view data, multi-view learning has become an important research direction in machine learning and image processing. Considering the difficulty of obtaining labeled data in many machine learning applications, we focus on the multi-view semi-supervised classification problem. In this paper, we propose an algorithm named multi-view semi-supervised classification via adaptive regression (MVAR) to address this problem. Specifically, regression-based loss functions with ℓ 2,1 matrix norm are adopted for each view and the final objective function is formulated as the linear weighted combination of all the loss functions. An efficient algorithm with proved convergence is developed to solve the non-smooth ℓ 2,1 -norm minimization problem. Regressing to class labels directly makes the proposed algorithm efficient in calculation and can be applied to large-scale data sets. The adaptively optimized weight coefficients balance the contributions of different views automatically, which makes the performance robust against the existence of low-quality views. With the learned projection matrices and bias vectors, predictions for out-of-sample data can be easily made. To validate the effectiveness of MVAR, comparisons are made with some benchmark methods on realworld data sets and in the scene classification scenario as well. The experimental results demonstrate the effectiveness of our proposed algorithm.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28641262</pmid><doi>10.1109/TIP.2017.2717191</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9335-0469</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2017-09, Vol.26 (9), p.4283-4296
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_1913396679
source IEEE Electronic Library (IEL) Journals
subjects Algorithm design and analysis
classification
Computational modeling
Kernel
Minimization
Multi-view
norm minimization
Prediction algorithms
semi-supervised learning
Semisupervised learning
Training
title Scalable Multi-View Semi-Supervised Classification via Adaptive Regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Multi-View%20Semi-Supervised%20Classification%20via%20Adaptive%20Regression&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Tao,%20Hong&rft.date=2017-09&rft.volume=26&rft.issue=9&rft.spage=4283&rft.epage=4296&rft.pages=4283-4296&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2717191&rft_dat=%3Cproquest_cross%3E1913396679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-51941e88c9d790c7bf49193320145f9d3ccc49988a1ffdbeb2f595b5bf57c003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1913396679&rft_id=info:pmid/28641262&rft_ieee_id=7953537&rfr_iscdi=true