Loading…

Increased expression of (immuno)proteasome subunits during epileptogenesis is attenuated by inhibition of the mammalian target of rapamycin pathway

Summary Objective Inhibition of the mammalian target of rapamycin (mTOR) pathway reduces epileptogenesis in various epilepsy models, possibly by inhibition of inflammatory processes, which may include the proteasome system. To study the role of mTOR inhibition in the regulation of the proteasome sys...

Full description

Saved in:
Bibliographic Details
Published in:Epilepsia (Copenhagen) 2017-08, Vol.58 (8), p.1462-1472
Main Authors: Broekaart, Diede W. M., Scheppingen, Jackelien, Geijtenbeek, Karlijne W., Zuidberg, Mark R. J., Anink, Jasper J., Baayen, Johannes C., Mühlebner, Angelika, Aronica, Eleonora, Gorter, Jan A., Vliet, Erwin A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary Objective Inhibition of the mammalian target of rapamycin (mTOR) pathway reduces epileptogenesis in various epilepsy models, possibly by inhibition of inflammatory processes, which may include the proteasome system. To study the role of mTOR inhibition in the regulation of the proteasome system, we investigated (immuno)proteasome expression during epileptogenesis, as well as the effects of the mTOR inhibitor rapamycin. Methods The expression of constitutive (β1, β5) and immunoproteasome (β1i, β5i) subunits was investigated during epileptogenesis using immunohistochemistry in the electrical post‐status epilepticus (SE) rat model for temporal lobe epilepsy (TLE). The effect of rapamycin was studied on (immuno)proteasome subunit expression in post‐SE rats that were treated for 6 weeks. (Immuno)proteasome expression was validated in the brain tissue of patients who had SE or drug‐resistant TLE and the effect of rapamycin was studied in primary human astrocyte cultures. Results In post‐SE rats, increased (immuno)proteasome expression was detected throughout epileptogenesis in neurons and astrocytes within the hippocampus and piriform cortex and was most evident in rats that developed a progressive form of epilepsy. Rapamycin‐treated post‐SE rats had reduced (immuno)proteasome protein expression and a lower number of spontaneous seizures compared to vehicle‐treated rats. (Immuno)proteasome expression was also increased in neurons and astrocytes within the human hippocampus after SE and in patients with drug‐resistant TLE. In vitro studies using cultured human astrocytes showed that interleukin (IL)‐1β‐induced (immuno)proteasome gene expression could be attenuated by rapamycin. Significance Because dysregulation of the (immuno)proteasome system is observed before the occurrence of spontaneous seizures in rats, is associated with progression of epilepsy, and can be modulated via the mTOR pathway, it may represent an interesting novel target for drug treatment in epilepsy.
ISSN:0013-9580
1528-1167
DOI:10.1111/epi.13823